Cargando…
A multi-channel in situ light scattering instrument utilized for monitoring protein aggregation and liquid dense cluster formation
Liquid-liquid phase separation (LLPS) phenomena have been observed in vitro as well as in vivo and came in focus of interdisciplinary research activities particularly aiming at understanding the physico-chemical pathways of LLPS and its functionality in recent years. Dynamic light scattering (DLS) h...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921120/ https://www.ncbi.nlm.nih.gov/pubmed/31886430 http://dx.doi.org/10.1016/j.heliyon.2019.e03016 |
Sumario: | Liquid-liquid phase separation (LLPS) phenomena have been observed in vitro as well as in vivo and came in focus of interdisciplinary research activities particularly aiming at understanding the physico-chemical pathways of LLPS and its functionality in recent years. Dynamic light scattering (DLS) has been proven to be a most efficient method to analyze macromolecular clustering in solutions and suspensions with diverse applications in life sciences, material science and biotechnology. For spatially and time-resolved investigations of LLPS, i.e. formation of liquid dense protein clusters (LDCs) and aggregation, a novel eight-channel in situ DLS instrument was designed, constructed and applied. The real time formation of LDCs of glucose isomerase (GI) and bovine pancreatic trypsin inhibitor (BPTI) under different physico-chemical conditions was investigated in situ. Complex shifts in the particle size distributions indicated growth of LDCs up to the μm size regime. Additionally, near-UV circular dichroism spectroscopy was performed to monitor the folding state of the proteins in the process of LDC formation. |
---|