Cargando…

Pharmacological blockade of PCAF ameliorates osteoarthritis development via dual inhibition of TNF-α-driven inflammation and ER stress

BACKGROUND: Epigenetic mechanisms have been reported to play key roles in osteoarthritis (OA) development. P300/CBP-associated factor (PCAF) is a member of the histone acetyltransferases, which exhibits a strong relationship with endoplasmic reticulum (ER) stress and transcription factor nuclear fac...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Deheng, Lu, Di, Liu, Haixiao, Xue, Enxing, Zhang, Yu, Shang, Ping, Pan, Xiaoyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921217/
https://www.ncbi.nlm.nih.gov/pubmed/31735552
http://dx.doi.org/10.1016/j.ebiom.2019.10.054
Descripción
Sumario:BACKGROUND: Epigenetic mechanisms have been reported to play key roles in osteoarthritis (OA) development. P300/CBP-associated factor (PCAF) is a member of the histone acetyltransferases, which exhibits a strong relationship with endoplasmic reticulum (ER) stress and transcription factor nuclear factor kappa B (NF-κB) signals. Salidroside, a natural histone acetylation inhibitor, showed its anti-inflammatory and anti-apoptotic effects in lipopolysaccharide (LPS)-stimulated microglia cells in our previous study. However, whether Sal has a protective effect against OA remains unknown, and its relationships to PCAF, NF-κB, and the ER stress pathway should be explored further. METHODS: We identified the role of PCAF in the pathogenesis of OA and determined the chondroprotective effect of Sal on both tumor necrosis factor alpha (TNF-α)-treated human chondrocytes and a destabilized medial meniscus (DMM) mouse OA model. FINDINGS: We found increased PCAF expression in human OA cartilage and TNF-α-driven chondrocytes. Meanwhile, silencing of PCAF attenuated nuclear p65 and C/EBP homologous protein levels in chondrocytes upon TNF-α stimulation. Furthermore, Sal was found to specifically bind to the inhibitory site of the PCAF protein structure, which subsequently reversed the TNF-α-induced activation of NF-κB signal and ER stress-related apoptosis in chondrocytes. In addition, the protective effect of Sal and its inhibitory effects on PCAF as well as inflammatory- and ER stress-related markers were also observed in the mouse DMM model. INTERPRETATION: Pharmacological blockade of PCAF by Sal ameliorates OA development via inhibition of inflammation and ER stress, which makes Sal a promising therapeutic agents for the treatment of OA.