Cargando…

Pro-inflammatory monocyte profile in patients with major depressive disorder and suicide behaviour and how ketamine induces anti-inflammatory M2 macrophages by NMDAR and mTOR

BACKGROUND: Depression is a highly prevalent disorder that is one of the leading causes of disability worldwide. Despite an unknown aetiology, evidence suggests that the innate and adaptive immune systems play a significant role in the development and maintenance of major depressive disorder (MDD)....

Descripción completa

Detalles Bibliográficos
Autores principales: Nowak, Wanda, Grendas, Leandro Nicolás, Sanmarco, Liliana María, Estecho, Ivana Gisele, Arena, Ángeles Romina, Eberhardt, Natalia, Rodante, Demián Emanuel, Aoki, María Pilar, Daray, Federico Manuel, Carrera Silva, Eugenio Antonio, Errasti, Andrea Emilse
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921226/
https://www.ncbi.nlm.nih.gov/pubmed/31753725
http://dx.doi.org/10.1016/j.ebiom.2019.10.063
Descripción
Sumario:BACKGROUND: Depression is a highly prevalent disorder that is one of the leading causes of disability worldwide. Despite an unknown aetiology, evidence suggests that the innate and adaptive immune systems play a significant role in the development and maintenance of major depressive disorder (MDD). The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), has demonstrated rapid and robust efficacy as an antidepressant when administered at sub-anaesthetic doses. METHODS: Our goal was to characterize the pro-inflammatory profile of patients with MDD by measuring pro-inflammatory cytokines in plasma and circulating monocyte subsets and to understand how ketamine induces an anti-inflammatory program in monocyte and macrophages in vitro and vivo. FINDING: Our results show that patients with MDD without other comorbidities (N = 33) exhibited significantly higher levels of pro-inflammatory IL-12 and IL-6 in plasma and that these cytokines were associated with increased numbers of non-classical (CD11b(+)CD16(bright)CD14(neg)) monocytes and increased activation state (CD40(+)CD86(+)) of classical monocytes in circulation. Remarkably, we have demonstrated that sub-anaesthetic doses of ketamine programs human monocytes into M2c-like macrophages by inducing high levels of CD163 and MERTK with intermediate levels of CD64 and stimulating mTOR-associated gene expression in vitro. The NMDAR antagonist MK-801, but not the α-amino-3‑hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antagonist, NBQX, also polarizes macrophages to an M2c-like phenotype, but this phenotype disappears upon mTOR pathway inhibition. Sub-anaesthetic doses (10 mg/kg) of ketamine administration in mice both promote reduction of circulating classical pro-inflammatory monocytes and increase of alternative M2 macrophage subtypes in the spleen and CNS. INTERPRETATION: Our results suggest an anti-inflammatory property of ketamine that can skew macrophages to an M2-like phenotype, highlighting potential therapeutic implications not only for patients with MDD but also other inflammatory-based diseases. FUNDING: This study was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT-FONCYT).