Cargando…
Mir-29b mediates the regulation of Nrf2 on airway epithelial remodeling and Th1/Th2 differentiation in COPD rats
COPD, or Chronic obstructive pulmonary disease, is an inflammation-related disease and lead to cachexia and muscle wasting. Altered nuclear factor erythroid 2-related factor 2 (Nrf2) expression is found in patients of COPD because it is involved in pulmonary protective effects. MiR-29b could be acti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921304/ https://www.ncbi.nlm.nih.gov/pubmed/31885483 http://dx.doi.org/10.1016/j.sjbs.2019.07.011 |
Sumario: | COPD, or Chronic obstructive pulmonary disease, is an inflammation-related disease and lead to cachexia and muscle wasting. Altered nuclear factor erythroid 2-related factor 2 (Nrf2) expression is found in patients of COPD because it is involved in pulmonary protective effects. MiR-29b could be activated by Nrf2. We hypothesized that miR-29b might mediate the regulation of Nrf2 on Th1/Th2 differentiation and airway epithelial remodeling in COPD rats. SD rats were exposed to smoke for COPD induction. Expression of Nrf2 mRNA and miR-29b in lung tissues was quantified. Expression of Nrf2 and matrix metalloproteinase 2 (MMP2) were also detected by immunohistochemistry and western blot. Th1 markers and Th2 markers were measured by ELISA in peripheral blood. Flow cytometry was used to detect the Th1/Th2 ratio. miR-29b and Nrf2 was manipulated at mRNA level in A549 cells using transfection. Cellular growth and migration were measured in transfectants. In lung tissues of COPD rats, expression of Nrf2 and miR-29b decreased. MMP2, a target of miR-29b, had an opposite expression to miR-29b in peripheral blood. Levels of inflammatory factors and Th1/Th2 ratio increased. MiR-29b mediated the regulation of Nrf2 on remodeling of lung epithelial cells. Blocking Nrf2 expression in A549 cells led to the opposite expression of miR-29b and further decreased MMP2 production; meanwhile, cell growth and motility were improved. Different miR-29b levels affected MMP2 expression and cellular characteristics. The findings suggested that miR-29b was a regulator the pathological progress of COPD. It mediates the effect of Nrf2 on Th1/Th2 differentiation and on remodeling process of airway epithelial cells. |
---|