Cargando…
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
BACKGROUND: Current approaches to identifying drug-drug interactions (DDIs), include safety studies during drug development and post-marketing surveillance after approval, offer important opportunities to identify potential safety issues, but are unable to provide complete set of all possible DDIs....
Autores principales: | Celebi, Remzi, Uyar, Huseyin, Yasar, Erkan, Gumus, Ozgur, Dikenelli, Oguz, Dumontier, Michel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921491/ https://www.ncbi.nlm.nih.gov/pubmed/31852427 http://dx.doi.org/10.1186/s12859-019-3284-5 |
Ejemplares similares
-
Finding melanoma drugs through a probabilistic knowledge graph
por: McCusker, Jamie Patricia, et al.
Publicado: (2017) -
Enhancing drug–drug interaction prediction by three-way decision and knowledge graph embedding
por: Hao, Xinkun, et al.
Publicado: (2022) -
In-silico Prediction of Synergistic Anti-Cancer Drug Combinations Using Multi-omics Data
por: Celebi, Remzi, et al.
Publicado: (2019) -
Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study
por: Wang, Meng, et al.
Publicado: (2021) -
Prediction of adverse drug reactions based on knowledge graph embedding
por: Zhang, Fei, et al.
Publicado: (2021)