Cargando…

Identification of the complete coding cDNAs and expression analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the colostrum and milk of the Garganica and Maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis

BACKGROUND: Milk sialylated oligosaccharides (SOS) play crucial roles in many biological processes. The most abundant free SOS in goat’s milk are 3’sialyllactose (3′-SL), 6’sialyllactose (6′-SL) and disialyllactose (DSL). The production of these molecules is determined genetically by the expression...

Descripción completa

Detalles Bibliográficos
Autores principales: Crisà, Alessandra, Claps, Salvatore, Moioli, Bianca, Marchitelli, Cinzia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921551/
https://www.ncbi.nlm.nih.gov/pubmed/31852463
http://dx.doi.org/10.1186/s12917-019-2206-0
_version_ 1783481184961953792
author Crisà, Alessandra
Claps, Salvatore
Moioli, Bianca
Marchitelli, Cinzia
author_facet Crisà, Alessandra
Claps, Salvatore
Moioli, Bianca
Marchitelli, Cinzia
author_sort Crisà, Alessandra
collection PubMed
description BACKGROUND: Milk sialylated oligosaccharides (SOS) play crucial roles in many biological processes. The most abundant free SOS in goat’s milk are 3’sialyllactose (3′-SL), 6’sialyllactose (6′-SL) and disialyllactose (DSL). The production of these molecules is determined genetically by the expression of glycosyltransferases and by the availability of nucleotide sugar substrates, but the precise mechanisms regulating the differential patterns of milk oligosaccharides are not known. We aimed to identify the complete cDNAs of candidate genes implicated in SOS biosynthesis (B4GALT1, LALBA, ST3GAL5, ST6GAL1) and to analyse their expression during lactation in the Garganica and Maltese goat breeds. Moreover, we analysed the colostrum and milk contents of 3′-SL, 6′-SL and disialyllactose (DSL) and the possible correlations between expressed genes and SOS. RESULTS: We identified the complete coding cDNAs of B4GALT1 (HQ700335.1), ST3GAL5 (KF055858.2), and ST6GAL1 (HQ709167.1), the single nucleotide polymorphism (SNPs) of these genes and 2 splicing variants of the ST6GAL1 cDNA. RT-qPCR analysis showed that LALBA and ST6GAL1 were the genes with the highest and lowest expression in both breeds, respectively. The interaction effects of the breeds and sampling times were associated with higher levels of B4GALT1 and ST3GAL5 gene expression in Garganica than in Maltese goats at kidding. B4GALT1, LALBA, and ST3GAL5 gene expression changed from kidding to 60 and 120 days in Maltese goats, while in Garganica goats, a difference was observed only for the LALBA gene. Breed and lactation effects were also found for SOS contents. Positive correlations of B4GALT1, LALBA, ST3GAL5, and ST6GAL1 with 3′-SL/6′SL and DSL were found. CONCLUSIONS: The genetic effect on the oligosaccharide content of milk was previously highlighted in bovines, and this study is the first to investigate this effect in two goat breeds (Garganica and Maltese) during lactation. The genetic variability of candidate genes involved in SOS biosynthesis highlights their potential role in affecting gene expression and ultimately biological function. The investigation of gene regulatory regions as well as the examination of other sialyltransferase genes will be needed to identify the genetic pattern leading to a higher SOS content in the autochtonous Garganica breed and to protect it using a focused breeding strategy.
format Online
Article
Text
id pubmed-6921551
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-69215512019-12-30 Identification of the complete coding cDNAs and expression analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the colostrum and milk of the Garganica and Maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis Crisà, Alessandra Claps, Salvatore Moioli, Bianca Marchitelli, Cinzia BMC Vet Res Research Article BACKGROUND: Milk sialylated oligosaccharides (SOS) play crucial roles in many biological processes. The most abundant free SOS in goat’s milk are 3’sialyllactose (3′-SL), 6’sialyllactose (6′-SL) and disialyllactose (DSL). The production of these molecules is determined genetically by the expression of glycosyltransferases and by the availability of nucleotide sugar substrates, but the precise mechanisms regulating the differential patterns of milk oligosaccharides are not known. We aimed to identify the complete cDNAs of candidate genes implicated in SOS biosynthesis (B4GALT1, LALBA, ST3GAL5, ST6GAL1) and to analyse their expression during lactation in the Garganica and Maltese goat breeds. Moreover, we analysed the colostrum and milk contents of 3′-SL, 6′-SL and disialyllactose (DSL) and the possible correlations between expressed genes and SOS. RESULTS: We identified the complete coding cDNAs of B4GALT1 (HQ700335.1), ST3GAL5 (KF055858.2), and ST6GAL1 (HQ709167.1), the single nucleotide polymorphism (SNPs) of these genes and 2 splicing variants of the ST6GAL1 cDNA. RT-qPCR analysis showed that LALBA and ST6GAL1 were the genes with the highest and lowest expression in both breeds, respectively. The interaction effects of the breeds and sampling times were associated with higher levels of B4GALT1 and ST3GAL5 gene expression in Garganica than in Maltese goats at kidding. B4GALT1, LALBA, and ST3GAL5 gene expression changed from kidding to 60 and 120 days in Maltese goats, while in Garganica goats, a difference was observed only for the LALBA gene. Breed and lactation effects were also found for SOS contents. Positive correlations of B4GALT1, LALBA, ST3GAL5, and ST6GAL1 with 3′-SL/6′SL and DSL were found. CONCLUSIONS: The genetic effect on the oligosaccharide content of milk was previously highlighted in bovines, and this study is the first to investigate this effect in two goat breeds (Garganica and Maltese) during lactation. The genetic variability of candidate genes involved in SOS biosynthesis highlights their potential role in affecting gene expression and ultimately biological function. The investigation of gene regulatory regions as well as the examination of other sialyltransferase genes will be needed to identify the genetic pattern leading to a higher SOS content in the autochtonous Garganica breed and to protect it using a focused breeding strategy. BioMed Central 2019-12-18 /pmc/articles/PMC6921551/ /pubmed/31852463 http://dx.doi.org/10.1186/s12917-019-2206-0 Text en © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Crisà, Alessandra
Claps, Salvatore
Moioli, Bianca
Marchitelli, Cinzia
Identification of the complete coding cDNAs and expression analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the colostrum and milk of the Garganica and Maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis
title Identification of the complete coding cDNAs and expression analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the colostrum and milk of the Garganica and Maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis
title_full Identification of the complete coding cDNAs and expression analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the colostrum and milk of the Garganica and Maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis
title_fullStr Identification of the complete coding cDNAs and expression analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the colostrum and milk of the Garganica and Maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis
title_full_unstemmed Identification of the complete coding cDNAs and expression analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the colostrum and milk of the Garganica and Maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis
title_short Identification of the complete coding cDNAs and expression analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the colostrum and milk of the Garganica and Maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis
title_sort identification of the complete coding cdnas and expression analysis of b4galt1, lalba, st3gal5, st6gal1 in the colostrum and milk of the garganica and maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921551/
https://www.ncbi.nlm.nih.gov/pubmed/31852463
http://dx.doi.org/10.1186/s12917-019-2206-0
work_keys_str_mv AT crisaalessandra identificationofthecompletecodingcdnasandexpressionanalysisofb4galt1lalbast3gal5st6gal1inthecolostrumandmilkofthegarganicaandmaltesegoatbreedstorevealpossibleimplicationsforoligosaccharidebiosynthesis
AT clapssalvatore identificationofthecompletecodingcdnasandexpressionanalysisofb4galt1lalbast3gal5st6gal1inthecolostrumandmilkofthegarganicaandmaltesegoatbreedstorevealpossibleimplicationsforoligosaccharidebiosynthesis
AT moiolibianca identificationofthecompletecodingcdnasandexpressionanalysisofb4galt1lalbast3gal5st6gal1inthecolostrumandmilkofthegarganicaandmaltesegoatbreedstorevealpossibleimplicationsforoligosaccharidebiosynthesis
AT marchitellicinzia identificationofthecompletecodingcdnasandexpressionanalysisofb4galt1lalbast3gal5st6gal1inthecolostrumandmilkofthegarganicaandmaltesegoatbreedstorevealpossibleimplicationsforoligosaccharidebiosynthesis