Cargando…
Surface Activity of Smart Hybrid Polysiloxane-co-N-isopropylacrylamide Microgels
[Image: see text] Amphiphilic smart gels of different sizes (macro, micro, and nano) are widely used in advanced medical, industrial, and environmental applications. They are sensitive, responsive to different environments, and possess a high surface activity to adsorb onto different interfaces. In...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921624/ https://www.ncbi.nlm.nih.gov/pubmed/31867534 http://dx.doi.org/10.1021/acsomega.9b03102 |
Sumario: | [Image: see text] Amphiphilic smart gels of different sizes (macro, micro, and nano) are widely used in advanced medical, industrial, and environmental applications. They are sensitive, responsive to different environments, and possess a high surface activity to adsorb onto different interfaces. In this study, new amphiphilic alkoxysilane-containing microgels, hybrid polysiloxane microgel, and silica nanoparticles were prepared using a cross-linking surfactant-free cross-linking polymerization technique for N-isopropylacrylamide (NIPAm) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) monomers. Vinyltrimethoxysilane (VTS) was used as a silane precursor in the cross-linking polymerization to hydrolyze with tetraethoxysilane (TEOS) in ammonia using an emulsion technique, to create polysiloxane microgel and silica nanoparticles. The surface activity measurements confirmed that NIPAm/VTS had a higher surface activity than NIPAm/AMPS-VTS microgels and their hybrid polysiloxane microgel owing to the differences of the cross-linking of microgels from the center to the microgel periphery, which alter their morphologies. |
---|