Cargando…
Improving the prediction accuracy of river inflow using two data pre-processing techniques coupled with data-driven model
River inflow prediction plays an important role in water resources management and power-generating systems. But the noises and multi-scale nature of river inflow data adds an extra layer of complexity towards accurate predictive model. To overcome this issue, we proposed a hybrid model, Variational...
Autores principales: | Nazir, Hafiza Mamona, Hussain, Ijaz, Faisal, Muhammad, Elashkar, Elsayed Elsherbini, Shoukry, Alaa Mohamd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921981/ https://www.ncbi.nlm.nih.gov/pubmed/31871832 http://dx.doi.org/10.7717/peerj.8043 |
Ejemplares similares
-
Dependence structure analysis of multisite river inflow data using vine copula-CEEMDAN based hybrid model
por: Nazir, Hafiza Mamona, et al.
Publicado: (2020) -
An improved framework to predict river flow time series data
por: Nazir, Hafiza Mamona, et al.
Publicado: (2019) -
Evaluation of wet and dry event’s trend and instability based on the meteorological drought index
por: Shaukat, Muhammad Haroon, et al.
Publicado: (2020) -
Monthly drought prediction based on ensemble models
por: Shaukat, Muhammad Haroon, et al.
Publicado: (2020) -
Battling for Consumer's Positive Purchase Intention: A Comparative Study Between Two Psychological Techniques to Achieve Success and Sustainability for Digital Entrepreneurships
por: Dong, Dandan, et al.
Publicado: (2021)