Cargando…
Differential expression of ghrelin and GHSR via the mTOR pathway during the dynamic carcinogenic process involving oral, potentially malignant disorders
The purpose was to explore the sequence changes in ghrelin and GHSR in the mTOR signaling pathway during carcinogenesis involving oral, potentially malignant disorders (OPMD). The samples were confirmed through in vivo pathologic tissue screening and diagnosis. The immunohistochemical method was use...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923334/ https://www.ncbi.nlm.nih.gov/pubmed/31750884 http://dx.doi.org/10.1042/BSR20192102 |
Sumario: | The purpose was to explore the sequence changes in ghrelin and GHSR in the mTOR signaling pathway during carcinogenesis involving oral, potentially malignant disorders (OPMD). The samples were confirmed through in vivo pathologic tissue screening and diagnosis. The immunohistochemical method was used to detect the expression of the ghrelin/growth hormone secretagogue receptor (GHSR) protein. The expression of ghrelin, GHSR 1α, GHSR 1β, and mammalian target of rapamycin (mTOR) RNA were detected by real-time PCR. The expression of ghrelin, GHSR, mTOR, and phosphorylated mTOR (phosphor-mTOR) protein were detected by Western blot. The expression of ghrelin/GHSR increased gradually in the dynamic process of OPMD carcinogenesis. There was a correlation between the increase in ghrelin, GHSR, mTOR, and phospho-mTOR. The in vivo expression of ghrelin/GHSR protein was the most apparent pathologic change from normal-to-mild, moderate, and severe dysplasia, and finally to the dynamic process from normal-to-mild-to-moderate dysplasia. The in vitro cell experiments based on QPCR results also proved that GHSR 1a functional receptor of ghrelin had a peak expression in LEUK-1 cells. In conclusioin, the close relationship between ghrelin and OPMD carcinogenesis can be used as a new biological target to assess the carcinogenesis of OPMD. |
---|