Cargando…

Genome-wide analysis of fatty acid desaturase genes in rice (Oryza sativa L.)

Fatty acid desaturases can catalyze saturated or unsaturated fatty acids to form a double bond at various locations in the hydrocarbon chain. In the present study, a total of 20 full-length desaturase genes were identified from rice genome. An exhaustive analysis was performed to describe their chro...

Descripción completa

Detalles Bibliográficos
Autores principales: E, Zhiguo, Chen, Chen, Yang, Jinyu, Tong, Hanhua, Li, Tingting, Wang, Lei, Chen, Hongqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923433/
https://www.ncbi.nlm.nih.gov/pubmed/31857634
http://dx.doi.org/10.1038/s41598-019-55648-z
Descripción
Sumario:Fatty acid desaturases can catalyze saturated or unsaturated fatty acids to form a double bond at various locations in the hydrocarbon chain. In the present study, a total of 20 full-length desaturase genes were identified from rice genome. An exhaustive analysis was performed to describe their chromosomal locations, gene structures, phylogeny, cis-regulatory elements, sub-cellular localizations and expression patterns. The rice desaturase genes were distributed on ten of 12 chromosomes and phylogenetically classified into six subfamilies with the Arabidopsis counterparts, FAB2, FAD2, FAD3/7/8, FAD6, DES1 and SLD1. Among of them, 9 members were expanded via chromosomal tandem or segmental duplications. The gene structures and motif constituents were evolutionarily conserved in the same subfamilies. The majority of desaturase genes showed tissue-specific expression patterns and response to abiotic stresses and hormones based on microarray data and qRT-PCR analyses. This study will provide useful clues for functional validation of desaturase genes and contribute to produce nutritionally important fatty acids by genetic modification in rice.