Cargando…
Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE)
BACKGROUND: Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link differ...
Autores principales: | Ma, Tianle, Zhang, Aidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923820/ https://www.ncbi.nlm.nih.gov/pubmed/31856727 http://dx.doi.org/10.1186/s12864-019-6285-x |
Ejemplares similares
-
Quantum Variational AutoEncoder
por: Vinci, Walter
Publicado: (2018) -
DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping
por: Munquad, Sana, et al.
Publicado: (2023) -
Benchmarking variational AutoEncoders on cancer transcriptomics data
por: Eltager, Mostafa, et al.
Publicado: (2023) -
Road-Type Classification with Deep AutoEncoder
por: Molefe, Mohale E., et al.
Publicado: (2023) -
Integrated multi-omics analysis of ovarian cancer using variational autoencoders
por: Hira, Muta Tah, et al.
Publicado: (2021)