Cargando…
BayesMetab: treatment of missing values in metabolomic studies using a Bayesian modeling approach
BACKGROUND: With the rise of metabolomics, the development of methods to address analytical challenges in the analysis of metabolomics data is of great importance. Missing values (MVs) are pervasive, yet the treatment of MVs can have a substantial impact on downstream statistical analyses. The MVs p...
Autores principales: | Shah, Jasmit, Brock, Guy N., Gaskins, Jeremy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923847/ https://www.ncbi.nlm.nih.gov/pubmed/31861984 http://dx.doi.org/10.1186/s12859-019-3250-2 |
Ejemplares similares
-
Metabolomics data analysis and missing value issues with application to infarcted mouse hearts
por: Shah, Jasmit S, et al.
Publicado: (2015) -
ProbMetab: an R package for Bayesian probabilistic annotation of LC–MS-based metabolomics
por: Silva, Ricardo R., et al.
Publicado: (2014) -
COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access
por: Salek, Reza M., et al.
Publicado: (2015) -
eBay: the missing manual
por: Conner, Nancy
Publicado: (2005) -
MetabR: an R script for linear model analysis of quantitative metabolomic data
por: Ernest, Ben, et al.
Publicado: (2012)