Cargando…
MethylToSNP: identifying SNPs in Illumina DNA methylation array data
BACKGROUND: Current array-based methods for the measurement of DNA methylation rely on the process of sodium bisulfite conversion to differentiate between methylated and unmethylated cytosine bases in DNA. In the absence of genotype data this process can lead to ambiguity in data interpretation when...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923858/ https://www.ncbi.nlm.nih.gov/pubmed/31861999 http://dx.doi.org/10.1186/s13072-019-0321-6 |
_version_ | 1783481607480410112 |
---|---|
author | LaBarre, Brenna A. Goncearenco, Alexander Petrykowska, Hanna M. Jaratlerdsiri, Weerachai Bornman, M. S. Riana Hayes, Vanessa M. Elnitski, Laura |
author_facet | LaBarre, Brenna A. Goncearenco, Alexander Petrykowska, Hanna M. Jaratlerdsiri, Weerachai Bornman, M. S. Riana Hayes, Vanessa M. Elnitski, Laura |
author_sort | LaBarre, Brenna A. |
collection | PubMed |
description | BACKGROUND: Current array-based methods for the measurement of DNA methylation rely on the process of sodium bisulfite conversion to differentiate between methylated and unmethylated cytosine bases in DNA. In the absence of genotype data this process can lead to ambiguity in data interpretation when a sample has polymorphisms at a methylation probe site. A common way to minimize this problem is to exclude such potentially problematic sites, with some methods removing as much as 60% of array probes from consideration before data analysis. RESULTS: Here, we present an algorithm implemented in an R Bioconductor package, MethylToSNP, which detects a characteristic data pattern to infer sites likely to be confounded by polymorphisms. Additionally, the tool provides a stringent reliability score to allow thresholding on SNP predictions. We calibrated parameters and thresholds used by the algorithm on simulated and real methylation data sets. We illustrate findings using methylation data from YRI (Yoruba in Ibadan, Nigeria), CEPH (European descent) and KhoeSan (southern African) populations. Our polymorphism predictions made using MethylToSNP have been validated through SNP databases and bisulfite and genomic sequencing. CONCLUSIONS: The benefits of this method are threefold. First, it prevents extensive data loss by considering only SNPs specific to the individuals in the study. Second, it offers the possibility to identify new polymorphisms in samples for which there is little known about the genetic landscape. Third, it identifies variants as they exist in functional regions of a genome, such as in CTCF (transcriptional repressor) sites and enhancers, that may be common alleles or personal mutations with potential to deleteriously affect genomic regulatory activities. We demonstrate that MethylToSNP is applicable to the Illumina 450K and Illumina 850K EPIC array data and is also backwards compatible to the 27K methylation arrays. Going forward, this kind of nuanced approach can increase the amount of information derived from precious data sets by considering samples of the project individually to enable more informed decisions about data cleaning. |
format | Online Article Text |
id | pubmed-6923858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-69238582019-12-30 MethylToSNP: identifying SNPs in Illumina DNA methylation array data LaBarre, Brenna A. Goncearenco, Alexander Petrykowska, Hanna M. Jaratlerdsiri, Weerachai Bornman, M. S. Riana Hayes, Vanessa M. Elnitski, Laura Epigenetics Chromatin Methodology BACKGROUND: Current array-based methods for the measurement of DNA methylation rely on the process of sodium bisulfite conversion to differentiate between methylated and unmethylated cytosine bases in DNA. In the absence of genotype data this process can lead to ambiguity in data interpretation when a sample has polymorphisms at a methylation probe site. A common way to minimize this problem is to exclude such potentially problematic sites, with some methods removing as much as 60% of array probes from consideration before data analysis. RESULTS: Here, we present an algorithm implemented in an R Bioconductor package, MethylToSNP, which detects a characteristic data pattern to infer sites likely to be confounded by polymorphisms. Additionally, the tool provides a stringent reliability score to allow thresholding on SNP predictions. We calibrated parameters and thresholds used by the algorithm on simulated and real methylation data sets. We illustrate findings using methylation data from YRI (Yoruba in Ibadan, Nigeria), CEPH (European descent) and KhoeSan (southern African) populations. Our polymorphism predictions made using MethylToSNP have been validated through SNP databases and bisulfite and genomic sequencing. CONCLUSIONS: The benefits of this method are threefold. First, it prevents extensive data loss by considering only SNPs specific to the individuals in the study. Second, it offers the possibility to identify new polymorphisms in samples for which there is little known about the genetic landscape. Third, it identifies variants as they exist in functional regions of a genome, such as in CTCF (transcriptional repressor) sites and enhancers, that may be common alleles or personal mutations with potential to deleteriously affect genomic regulatory activities. We demonstrate that MethylToSNP is applicable to the Illumina 450K and Illumina 850K EPIC array data and is also backwards compatible to the 27K methylation arrays. Going forward, this kind of nuanced approach can increase the amount of information derived from precious data sets by considering samples of the project individually to enable more informed decisions about data cleaning. BioMed Central 2019-12-20 /pmc/articles/PMC6923858/ /pubmed/31861999 http://dx.doi.org/10.1186/s13072-019-0321-6 Text en © The Author(s) 2019 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Methodology LaBarre, Brenna A. Goncearenco, Alexander Petrykowska, Hanna M. Jaratlerdsiri, Weerachai Bornman, M. S. Riana Hayes, Vanessa M. Elnitski, Laura MethylToSNP: identifying SNPs in Illumina DNA methylation array data |
title | MethylToSNP: identifying SNPs in Illumina DNA methylation array data |
title_full | MethylToSNP: identifying SNPs in Illumina DNA methylation array data |
title_fullStr | MethylToSNP: identifying SNPs in Illumina DNA methylation array data |
title_full_unstemmed | MethylToSNP: identifying SNPs in Illumina DNA methylation array data |
title_short | MethylToSNP: identifying SNPs in Illumina DNA methylation array data |
title_sort | methyltosnp: identifying snps in illumina dna methylation array data |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923858/ https://www.ncbi.nlm.nih.gov/pubmed/31861999 http://dx.doi.org/10.1186/s13072-019-0321-6 |
work_keys_str_mv | AT labarrebrennaa methyltosnpidentifyingsnpsinilluminadnamethylationarraydata AT goncearencoalexander methyltosnpidentifyingsnpsinilluminadnamethylationarraydata AT petrykowskahannam methyltosnpidentifyingsnpsinilluminadnamethylationarraydata AT jaratlerdsiriweerachai methyltosnpidentifyingsnpsinilluminadnamethylationarraydata AT bornmanmsriana methyltosnpidentifyingsnpsinilluminadnamethylationarraydata AT hayesvanessam methyltosnpidentifyingsnpsinilluminadnamethylationarraydata AT elnitskilaura methyltosnpidentifyingsnpsinilluminadnamethylationarraydata |