Cargando…
Identification of lung cancer gene markers through kernel maximum mean discrepancy and information entropy
BACKGROUND: The early diagnosis of lung cancer has been a critical problem in clinical practice for a long time and identifying differentially expressed gene as disease marker is a promising solution. However, the most existing gene differential expression analysis (DEA) methods have two main drawba...
Autores principales: | Zhao, Zhixun, Peng, Hui, Zhang, Xiaocai, Zheng, Yi, Chen, Fang, Fang, Liang, Li, Jinyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923882/ https://www.ncbi.nlm.nih.gov/pubmed/31856830 http://dx.doi.org/10.1186/s12920-019-0630-4 |
Ejemplares similares
-
Inferring differentially expressed pathways using kernel maximum mean discrepancy-based test
por: Vegas, Esteban, et al.
Publicado: (2016) -
Classification of heterogeneous microarray data by maximum entropy kernel
por: Fujibuchi, Wataru, et al.
Publicado: (2007) -
Accurate prediction of DNA N(4)-methylcytosine sites via boost-learning various types of sequence features
por: Zhao, Zhixun, et al.
Publicado: (2020) -
Old drug repositioning and new drug discovery through similarity learning from drug-target joint feature spaces
por: Zheng, Yi, et al.
Publicado: (2019) -
Maximum entropy distributions with quantile information
por: Bajgiran, Amirsaman H., et al.
Publicado: (2021)