Cargando…
A deep neural network approach to predicting clinical outcomes of neuroblastoma patients
BACKGROUND: The availability of high-throughput omics datasets from large patient cohorts has allowed the development of methods that aim at predicting patient clinical outcomes, such as survival and disease recurrence. Such methods are also important to better understand the biological mechanisms u...
Autores principales: | Tranchevent, Léon-Charles, Azuaje, Francisco, Rajapakse, Jagath C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923884/ https://www.ncbi.nlm.nih.gov/pubmed/31856829 http://dx.doi.org/10.1186/s12920-019-0628-y |
Ejemplares similares
-
Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach
por: Tranchevent, Léon-Charles, et al.
Publicado: (2018) -
Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma
por: Wang, Conghao, et al.
Publicado: (2022) -
Analysis of correlation-based biomolecular networks from different omics data by fitting stochastic block models
por: Baum, Katharina, et al.
Publicado: (2019) -
FPGA implementations of neural networks
por: Omondi, Amos R, et al.
Publicado: (2006) -
DrDimont: explainable drug response prediction from differential analysis of multi-omics networks
por: Hiort, Pauline, et al.
Publicado: (2022)