Cargando…
M3S: a comprehensive model selection for multi-modal single-cell RNA sequencing data
BACKGROUND: Various statistical models have been developed to model the single cell RNA-seq expression profiles, capture its multimodality, and conduct differential gene expression test. However, for expression data generated by different experimental design and platforms, there is currently lack of...
Autores principales: | Zhang, Yu, Wan, Changlin, Wang, Pengcheng, Chang, Wennan, Huo, Yan, Chen, Jian, Ma, Qin, Cao, Sha, Zhang, Chi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923906/ https://www.ncbi.nlm.nih.gov/pubmed/31861972 http://dx.doi.org/10.1186/s12859-019-3243-1 |
Ejemplares similares
-
LTMG: a novel statistical modeling of transcriptional expression states in single-cell RNA-Seq data
por: Wan, Changlin, et al.
Publicado: (2019) -
PLUS: Predicting cancer metastasis potential based on positive and unlabeled learning
por: Zhou, Junyi, et al.
Publicado: (2022) -
A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data
por: Alghamdi, Norah, et al.
Publicado: (2021) -
Protocol for multi-modal single-cell RNA sequencing on M. tuberculosis-infected mouse lungs
por: Pisu, Davide, et al.
Publicado: (2023) -
MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
por: Argelaguet, Ricard, et al.
Publicado: (2020)