Cargando…
Fully moderated t-statistic in linear modeling of mixed effects for differential expression analysis
BACKGROUND: Gene expression profiling experiments with few replicates lead to great variability in the estimates of gene variances. Toward this end, several moderated t-test methods have been developed to reduce this variability and to increase power for testing differential expression. Most of thes...
Autores principales: | Yu, Lianbo, Zhang, Jianying, Brock, Guy, Fernandez, Soledad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923909/ https://www.ncbi.nlm.nih.gov/pubmed/31861977 http://dx.doi.org/10.1186/s12859-019-3248-9 |
Ejemplares similares
-
Power analysis for RNA-Seq differential expression studies using generalized linear mixed effects models
por: Yu, Lianbo, et al.
Publicado: (2020) -
Power analysis for RNA-Seq differential expression studies
por: Yu, Lianbo, et al.
Publicado: (2017) -
A general approach to mixed effects modeling of residual variances in generalized linear mixed models
por: Kizilkaya, Kadir, et al.
Publicado: (2005) -
Generalized linear mixed model for segregation distortion analysis
por: Zhan, Haimao, et al.
Publicado: (2011) -
Fully Bayesian tests of neutrality using genealogical summary statistics
por: Drummond, Alexei J, et al.
Publicado: (2008)