Cargando…

Activity and mechanism of flavokawain A in inhibiting P-glycoprotein expression in paclitaxel resistance of lung cancer

Lung cancer is one of the most common cancers, which is the leading cause of cancer-related death among various cancers worldwide. Flavokawain A (FKA), a chalcone found in the kava plant, exerts potent anticancer activity. However, the activity and mechanisms of FKA in inhibiting the viability of pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Juan, Zheng, Lei, Yan, Mi, Wu, Jing, Liu, Yongqing, Tian, Xiaona, Jiang, Wen, Zhang, Lu, Wang, Rongmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923923/
https://www.ncbi.nlm.nih.gov/pubmed/31897150
http://dx.doi.org/10.3892/ol.2019.11069
Descripción
Sumario:Lung cancer is one of the most common cancers, which is the leading cause of cancer-related death among various cancers worldwide. Flavokawain A (FKA), a chalcone found in the kava plant, exerts potent anticancer activity. However, the activity and mechanisms of FKA in inhibiting the viability of paclitaxel (PTX)-resistant lung cancer A549 (A549/T) have not been investigated. In the present study, the effect of FKA on the viability of A549/T and hepatotoxicity in normal liver epithelial cells was detected by Cell Counting Kit-8 assay. Flow cytometry, western blot analysis and Annexin V-FITC/PI apoptosis detection kit were used to assess cell apoptosis. The effect of FKA on permeability-glycoprotein (P-gp) expression was measured by reverse transcription-PCR and western blot analysis. The results indicated that FKA dose-dependently inhibited cell proliferation and induced cell apoptosis in PTX-resistant A549/T cells, with an IC(50) value of ~21 µM, while the IC(50) value of A549/T cells to PTX was 34.64 µM. FKA had no hepatic toxicity in liver epithelial cells. P-gp, which contributes to the chemoresistant phenotype, was not expressed in A549 cells but was remarkably enhanced in A549/T cells. FKA (30 µM) decreased P-gp protein expression at 24 h by 3-fold. Furthermore, FKA downregulated P-gp expression by blocking the PI3K/Akt pathway. These findings suggest FKA as a potential candidate for the treatment of PTX-resistant lung cancer.