Cargando…
Biological representation of chemicals using latent target interaction profile
BACKGROUND: Computational prediction of a phenotypic response upon the chemical perturbation on a biological system plays an important role in drug discovery, and many other applications. Chemical fingerprints are a widely used feature to build machine learning models. However, the fingerprints that...
Autores principales: | Ayed, Mohamed, Lim, Hansaim, Xie, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6924142/ https://www.ncbi.nlm.nih.gov/pubmed/31861982 http://dx.doi.org/10.1186/s12859-019-3241-3 |
Ejemplares similares
-
Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding
por: Liu, Yang, et al.
Publicado: (2022) -
Exploring Landscape of Drug-Target-Pathway-Side Effect Associations
por: Lim, Hansaim, et al.
Publicado: (2018) -
MSA-Regularized Protein Sequence Transformer toward
Predicting Genome-Wide Chemical-Protein Interactions: Application
to GPCRome Deorphanization
por: Cai, Tian, et al.
Publicado: (2021) -
Predicting chemical ecotoxicity by learning latent space chemical representations
por: Gao, Feng, et al.
Publicado: (2022) -
Latent representation learning in biology and translational medicine
por: Kopf, Andreas, et al.
Publicado: (2021)