Cargando…
Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks
Modern pathology diagnostics is being driven toward large scale digitization of microscopic tissue sections. A prerequisite for its safe implementation is the guarantee that all tissue present on a glass slide can also be found back in the digital image. Whole-slide scanners perform a tissue segment...
Autores principales: | Bándi, Péter, Balkenhol, Maschenka, van Ginneken, Bram, van der Laak, Jeroen, Litjens, Geert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6924324/ https://www.ncbi.nlm.nih.gov/pubmed/31871843 http://dx.doi.org/10.7717/peerj.8242 |
Ejemplares similares
-
Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer
por: Swiderska-Chadaj, Zaneta, et al.
Publicado: (2020) -
Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard
por: Bulten, Wouter, et al.
Publicado: (2019) -
Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
por: Litjens, Geert, et al.
Publicado: (2016) -
Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities
por: Ghafoorian, Mohsen, et al.
Publicado: (2017) -
Robust and accurate quantification of biomarkers of immune cells in lung cancer micro-environment using deep convolutional neural networks
por: Aprupe, Lilija, et al.
Publicado: (2019)