Cargando…
The power of dynamic social networks to predict individuals’ mental health
Precision medicine has received attention both in and outside the clinic. We focus on the latter, by exploiting the relationship between individuals’ social interactions and their mental health to predict one’s likelihood of being depressed or anxious from rich dynamic social network data. Existing...
Autores principales: | Liu, Shikang, Hachen, David, Lizardo, Omar, Poellabauer, Christian, Striegel, Aaron, Milenković, Tijana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6924569/ https://www.ncbi.nlm.nih.gov/pubmed/31797634 |
Ejemplares similares
-
Network analysis of the NetHealth data: exploring co-evolution of individuals’ social network positions and physical activities
por: Liu, Shikang, et al.
Publicado: (2018) -
Local versus global biological network alignment
por: Meng, Lei, et al.
Publicado: (2016) -
Neither influence nor selection: Examining co-evolution of political orientation and social networks in the NetSense and NetHealth studies
por: Wang, Cheng, et al.
Publicado: (2020) -
The impact of social networks on sleep among a cohort of college students
por: Wang, Cheng, et al.
Publicado: (2021) -
Improved supervised prediction of aging-related genes via weighted dynamic network analysis
por: Li, Qi, et al.
Publicado: (2021)