Cargando…
Machine learning with sparse nutrition data to improve cardiovascular mortality risk prediction in the USA using nationally randomly sampled data
OBJECTIVES: We aimed to test whether or not adding (1) nutrition predictor variables and/or (2) using machine learning models improves cardiovascular death prediction versus standard Cox models without nutrition predictor variables. DESIGN: Retrospective study. SETTING: Six waves of Survey (NHANES)...
Autores principales: | Rigdon, Joseph, Basu, Sanjay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6924849/ https://www.ncbi.nlm.nih.gov/pubmed/31784446 http://dx.doi.org/10.1136/bmjopen-2019-032703 |
Ejemplares similares
-
Use of Multi-Modal Data and Machine Learning to Improve Cardiovascular Disease Care
por: Amal, Saeed, et al.
Publicado: (2022) -
Association between level of depression and coronary heart disease, stroke risk and all-cause and cardiovascular mortality: Data from the 2005–2018 National Health and Nutrition Examination Survey
por: Shen, Ruihuan, et al.
Publicado: (2022) -
Frailty in hypertensive population and its association with all-cause mortality: data from the National Health and Nutrition Examination Survey
por: Li, Li, et al.
Publicado: (2023) -
Editorial: Systems biology and data-driven machine learning-based models in personalized cardiovascular medicine
por: Hueso, Miguel, et al.
Publicado: (2023) -
Restoring mortality data in the FOURIER cardiovascular outcomes trial of evolocumab in patients with cardiovascular disease: a reanalysis based on regulatory data
por: Erviti, Juan, et al.
Publicado: (2022)