Cargando…
Age-related alterations of articular cartilage in pituitary adenylate cyclase–activating polypeptide (PACAP) gene–deficient mice
Pituitary adenylate cyclase activating polypeptide (PACAP) is an evolutionarly conserved neuropeptide which is produced by various neuronal and non-neuronal cells, including cartilage and bone cells. PACAP has trophic functions in tissue development, and it also plays a role in cellular and tissue a...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925077/ https://www.ncbi.nlm.nih.gov/pubmed/31655957 http://dx.doi.org/10.1007/s11357-019-00097-9 |
_version_ | 1783481843520110592 |
---|---|
author | Szegeczki, Vince Bauer, Balázs Jüngling, Adél Fülöp, Balázs Daniel Vágó, Judit Perényi, Helga Tarantini, Stefano Tamás, Andrea Zákány, Róza Reglődi, Dóra Juhász, Tamás |
author_facet | Szegeczki, Vince Bauer, Balázs Jüngling, Adél Fülöp, Balázs Daniel Vágó, Judit Perényi, Helga Tarantini, Stefano Tamás, Andrea Zákány, Róza Reglődi, Dóra Juhász, Tamás |
author_sort | Szegeczki, Vince |
collection | PubMed |
description | Pituitary adenylate cyclase activating polypeptide (PACAP) is an evolutionarly conserved neuropeptide which is produced by various neuronal and non-neuronal cells, including cartilage and bone cells. PACAP has trophic functions in tissue development, and it also plays a role in cellular and tissue aging. PACAP takes part in the regulation of chondrogenesis, which prevents insufficient cartilage formation caused by oxidative and mechanical stress. PACAP knockout (KO) mice have been shown to display early aging signs affecting several organs. In the present work, we investigated articular cartilage of knee joints in young and aged wild-type (WT) and PACAP KO mice. A significant increase in the thickness of articular cartilage was detected in aged PACAP gene–deficient mice. Amongst PACAP receptors, dominantly PAC1 receptor was expressed in WT knee joints and a remarkable decrease was found in aged PACAP KO mice. Expression of PKA-regulated transcription factors, Sox5, Sox9 and CREB, decreased both in young and aged gene deficient mice, while Sox6, collagen type II and aggrecan expressions were elevated in young but were reduced in aged PACAP KO animals. Increased expression of hyaluronan (HA) synthases and HA-binding proteins was detected parallel with an elevated presence of HA in aged PACAP KO mice. Expression of bone related collagens (I and X) was augmented in young and aged animals. These results suggest that loss of PACAP signaling results in dysregulation of cartilage matrix composition and may transform articular cartilage in a way that it becomes more prone to degenerate. |
format | Online Article Text |
id | pubmed-6925077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-69250772020-01-03 Age-related alterations of articular cartilage in pituitary adenylate cyclase–activating polypeptide (PACAP) gene–deficient mice Szegeczki, Vince Bauer, Balázs Jüngling, Adél Fülöp, Balázs Daniel Vágó, Judit Perényi, Helga Tarantini, Stefano Tamás, Andrea Zákány, Róza Reglődi, Dóra Juhász, Tamás GeroScience Original Article Pituitary adenylate cyclase activating polypeptide (PACAP) is an evolutionarly conserved neuropeptide which is produced by various neuronal and non-neuronal cells, including cartilage and bone cells. PACAP has trophic functions in tissue development, and it also plays a role in cellular and tissue aging. PACAP takes part in the regulation of chondrogenesis, which prevents insufficient cartilage formation caused by oxidative and mechanical stress. PACAP knockout (KO) mice have been shown to display early aging signs affecting several organs. In the present work, we investigated articular cartilage of knee joints in young and aged wild-type (WT) and PACAP KO mice. A significant increase in the thickness of articular cartilage was detected in aged PACAP gene–deficient mice. Amongst PACAP receptors, dominantly PAC1 receptor was expressed in WT knee joints and a remarkable decrease was found in aged PACAP KO mice. Expression of PKA-regulated transcription factors, Sox5, Sox9 and CREB, decreased both in young and aged gene deficient mice, while Sox6, collagen type II and aggrecan expressions were elevated in young but were reduced in aged PACAP KO animals. Increased expression of hyaluronan (HA) synthases and HA-binding proteins was detected parallel with an elevated presence of HA in aged PACAP KO mice. Expression of bone related collagens (I and X) was augmented in young and aged animals. These results suggest that loss of PACAP signaling results in dysregulation of cartilage matrix composition and may transform articular cartilage in a way that it becomes more prone to degenerate. Springer International Publishing 2019-10-26 /pmc/articles/PMC6925077/ /pubmed/31655957 http://dx.doi.org/10.1007/s11357-019-00097-9 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Szegeczki, Vince Bauer, Balázs Jüngling, Adél Fülöp, Balázs Daniel Vágó, Judit Perényi, Helga Tarantini, Stefano Tamás, Andrea Zákány, Róza Reglődi, Dóra Juhász, Tamás Age-related alterations of articular cartilage in pituitary adenylate cyclase–activating polypeptide (PACAP) gene–deficient mice |
title | Age-related alterations of articular cartilage in pituitary adenylate cyclase–activating polypeptide (PACAP) gene–deficient mice |
title_full | Age-related alterations of articular cartilage in pituitary adenylate cyclase–activating polypeptide (PACAP) gene–deficient mice |
title_fullStr | Age-related alterations of articular cartilage in pituitary adenylate cyclase–activating polypeptide (PACAP) gene–deficient mice |
title_full_unstemmed | Age-related alterations of articular cartilage in pituitary adenylate cyclase–activating polypeptide (PACAP) gene–deficient mice |
title_short | Age-related alterations of articular cartilage in pituitary adenylate cyclase–activating polypeptide (PACAP) gene–deficient mice |
title_sort | age-related alterations of articular cartilage in pituitary adenylate cyclase–activating polypeptide (pacap) gene–deficient mice |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925077/ https://www.ncbi.nlm.nih.gov/pubmed/31655957 http://dx.doi.org/10.1007/s11357-019-00097-9 |
work_keys_str_mv | AT szegeczkivince agerelatedalterationsofarticularcartilageinpituitaryadenylatecyclaseactivatingpolypeptidepacapgenedeficientmice AT bauerbalazs agerelatedalterationsofarticularcartilageinpituitaryadenylatecyclaseactivatingpolypeptidepacapgenedeficientmice AT junglingadel agerelatedalterationsofarticularcartilageinpituitaryadenylatecyclaseactivatingpolypeptidepacapgenedeficientmice AT fulopbalazsdaniel agerelatedalterationsofarticularcartilageinpituitaryadenylatecyclaseactivatingpolypeptidepacapgenedeficientmice AT vagojudit agerelatedalterationsofarticularcartilageinpituitaryadenylatecyclaseactivatingpolypeptidepacapgenedeficientmice AT perenyihelga agerelatedalterationsofarticularcartilageinpituitaryadenylatecyclaseactivatingpolypeptidepacapgenedeficientmice AT tarantinistefano agerelatedalterationsofarticularcartilageinpituitaryadenylatecyclaseactivatingpolypeptidepacapgenedeficientmice AT tamasandrea agerelatedalterationsofarticularcartilageinpituitaryadenylatecyclaseactivatingpolypeptidepacapgenedeficientmice AT zakanyroza agerelatedalterationsofarticularcartilageinpituitaryadenylatecyclaseactivatingpolypeptidepacapgenedeficientmice AT reglodidora agerelatedalterationsofarticularcartilageinpituitaryadenylatecyclaseactivatingpolypeptidepacapgenedeficientmice AT juhasztamas agerelatedalterationsofarticularcartilageinpituitaryadenylatecyclaseactivatingpolypeptidepacapgenedeficientmice |