Cargando…
The METLIN small molecule dataset for machine learning-based retention time prediction
Machine learning has been extensively applied in small molecule analysis to predict a wide range of molecular properties and processes including mass spectrometry fragmentation or chromatographic retention time. However, current approaches for retention time prediction lack sufficient accuracy due t...
Autores principales: | Domingo-Almenara, Xavier, Guijas, Carlos, Billings, Elizabeth, Montenegro-Burke, J. Rafael, Uritboonthai, Winnie, Aisporna, Aries E., Chen, Emily, Benton, H. Paul, Siuzdak, Gary |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925099/ https://www.ncbi.nlm.nih.gov/pubmed/31862874 http://dx.doi.org/10.1038/s41467-019-13680-7 |
Ejemplares similares
-
Microbial Metabolite 3-Indolepropionic Acid Mediates Immunosuppression
por: Guijas, Carlos, et al.
Publicado: (2022) -
Drug-Initiated Activity Metabolomics Identifies Myristoylglycine as a Potent Endogenous Metabolite for Human Brown Fat Differentiation
por: Guijas, Carlos, et al.
Publicado: (2022) -
Thermal Degradation of Small Molecules: A Global Metabolomic
Investigation
por: Fang, Mingliang, et al.
Publicado: (2015) -
Data Streaming for Metabolomics: Accelerating Data
Processing and Analysis from Days to Minutes
por: Montenegro-Burke, J. Rafael, et al.
Publicado: (2016) -
Machine Learning-Based Retention Time Prediction of Trimethylsilyl Derivatives of Metabolites
por: de Cripan, Sara M., et al.
Publicado: (2022)