Cargando…
Minimal Linear Networks for Magnetic Resonance Image Reconstruction
Modern sequences for Magnetic Resonance Imaging (MRI) trade off scan time with computational challenges, resulting in ill-posed inverse problems and the requirement to account for more elaborated signal models. Various deep learning techniques have shown potential for image reconstruction from reduc...
Autores principales: | Liberman, Gilad, Poser, Benedikt A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925115/ https://www.ncbi.nlm.nih.gov/pubmed/31862922 http://dx.doi.org/10.1038/s41598-019-55763-x |
Ejemplares similares
-
Progressive Magnetic Resonance Image Reconstruction Based on Iterative Solution of a Sparse Linear System
por: Kadah, Yasser M., et al.
Publicado: (2006) -
Magnetic resonance imaging at 9.4 T: the Maastricht journey
por: Ivanov, Dimo, et al.
Publicado: (2023) -
Quantitative magnetic resonance imaging on hybrid magnetic resonance linear accelerators: Perspective on technical and clinical validation
por: Thorwarth, Daniela, et al.
Publicado: (2020) -
Minimally invasive magnetic resonance image-guided prostate interventions
por: van Luijtelaar, Annemarijke, et al.
Publicado: (2022) -
Linear PVA–DTPA–Gd conjugate for magnetic resonance imaging
por: Xu, Weibing, et al.
Publicado: (2019)