Cargando…
Fast 3D movement of a laser focusing spot behind scattering media by utilizing optical memory effect and optical conjugate planes
Controlling light propagation intentionally through turbid media such as ground glass or biological tissue has been demonstrated for many useful applications. Due to random scattering effect, one of the important goals is to draw a desired shape behind turbid media with a swift and precise method. F...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925146/ https://www.ncbi.nlm.nih.gov/pubmed/31862990 http://dx.doi.org/10.1038/s41598-019-56214-3 |
Sumario: | Controlling light propagation intentionally through turbid media such as ground glass or biological tissue has been demonstrated for many useful applications. Due to random scattering effect, one of the important goals is to draw a desired shape behind turbid media with a swift and precise method. Feedback wavefront shaping method which is known as a very effective approach to focus the light, is restricted by slow optimization process for obtaining multiple spots. Here we propose a technique to implement feedback wavefront shaping with optical memory effect and optical 4f system to speedy move focus spot and form shapes in 3D space behind scattering media. Starting with only one optimization process to achieve a focusing spot, the advantages of the optical configuration and full digital control allow us to move the focus spot with high quality at the speed of SLM frame rate. Multiple focusing spots can be achieved simultaneously by combining multiple phase patterns on a single SLM. By inheriting the phase patterns in the initial focusing process, we can enhance the intensity of the focusing spot at the edge of memory effect in with 50% reduction in optimization time. With a new focusing spot, we have two partially overlapped memory effect regions, expanding our 3D scanning range. With fast wavefront shaping devices, our proposed technique could potentially find appealing applications with biological tissues. |
---|