Cargando…

Exogenous application of zinc (Zn) at the heading stage regulates 2-acetyl-1-pyrroline (2-AP) biosynthesis in different fragrant rice genotypes

Zinc (Zn) is an important microelement for rice and plays a key role in many physiological processes. This study assessed the physio-biochemical responses involved in biosynthesis of 2-acety-1-pyrroline (2-AP), which is a key compound in the aroma of fragrant rice, in four different fragrant rice va...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Haowen, Du, Bin, He, Longxin, He, Jing, Hu, Lian, Pan, Shenggang, Tang, Xiangru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925297/
https://www.ncbi.nlm.nih.gov/pubmed/31862962
http://dx.doi.org/10.1038/s41598-019-56159-7
Descripción
Sumario:Zinc (Zn) is an important microelement for rice and plays a key role in many physiological processes. This study assessed the physio-biochemical responses involved in biosynthesis of 2-acety-1-pyrroline (2-AP), which is a key compound in the aroma of fragrant rice, in four different fragrant rice varieties, i.e., Meixiangzhan-2, Xiangyaxiangzhan, Ruanhuayou-134, and Yunjingyou. Four concentrations (0, 0.50, 1.00 and 2.00 g L(−1)) of zinc chloride were applied to fragrant rice foliage at the heading stage and named CK, Zn1, Zn2 and Zn3, respectively. Our results showed that compared with CK, the Zn1, Zn2 and Zn3 treatments all significantly increased the 2-AP concentration in mature grains of the four fragrant rice genotypes. Furthermore, exogenous application of Zn not only enhanced the activities of enzymes, including proline dehydrogenase (PDH), △1-pyrroline-5-carboxylic acid synthetase (P5CS), and diamine oxidase (DAO), which are involved in 2-AP biosynthesis, but also improved the contents of the related precursors, such as Δ1-pyrroline, proline and pyrroline-5-carboxylic acid (P5C). In addition, compared to the CK treatment, the Zn2 treatment markedly increased the net photosynthetic rate of fragrant rice during the grain filling stage and increased the seed-setting rate, 1000-grain weight and grain yield in all fragrant rice genotypes. Foliar application of Zn also markedly increased the grain Zn content. In general, 1.00 g L(−1) seemed to be the most suitable application concentration because the highest 2-AP content and grain weight were recorded with this treatment.