Cargando…
Data-mining Techniques for Image-based Plant Phenotypic Traits Identification and Classification
Statistical data-mining (DM) and machine learning (ML) are promising tools to assist in the analysis of complex dataset. In recent decades, in the precision of agricultural development, plant phenomics study is crucial for high-throughput phenotyping of local crop cultivars. Therefore, integrated or...
Autores principales: | Rahaman, Md. Matiur, Ahsan, Md. Asif, Chen, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925301/ https://www.ncbi.nlm.nih.gov/pubmed/31862925 http://dx.doi.org/10.1038/s41598-019-55609-6 |
Ejemplares similares
-
Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis
por: Rahaman, Md. Matiur, et al.
Publicado: (2017) -
Advanced phenotyping and phenotype data analysis for the study of plant growth and development
por: Rahaman, Md. Matiur, et al.
Publicado: (2015) -
Identification of host genomic biomarkers from multiple transcriptomics datasets for diagnosis and therapies of SARS-CoV-2 infections
por: Sarker, Bandhan, et al.
Publicado: (2023) -
Identification of epistasis loci underlying rice flowering time by controlling population stratification and polygenic effect
por: Ahsan, Asif, et al.
Publicado: (2019) -
Identification of epistasis loci underlying rice flowering time by controlling population stratification and polygenic effect
por: Ahsan, Asif, et al.
Publicado: (2019)