Cargando…
Dataset for file fragment classification of audio file formats
OBJECTIVES: File fragment classification of audio file formats is a topic of interest in network forensics. There are a few publicly available datasets of files with audio formats. Therewith, there is no public dataset for file fragments of audio file formats. So, a big research challenge in file fr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925457/ https://www.ncbi.nlm.nih.gov/pubmed/31864388 http://dx.doi.org/10.1186/s13104-019-4856-1 |
Sumario: | OBJECTIVES: File fragment classification of audio file formats is a topic of interest in network forensics. There are a few publicly available datasets of files with audio formats. Therewith, there is no public dataset for file fragments of audio file formats. So, a big research challenge in file fragment classification of audio file formats is to compare the performance of the developed methods over the same datasets. DATA DESCRIPTION: In this study, we present a dataset that contains file fragments of 20 audio file formats: AMR, AMR-WB, AAC, AIFF, CVSD, FLAC, GSM-FR, iLBC, Microsoft ADPCM, MP3, PCM, WMA, A-Law, µ-Law, G.726, G.729, Microsoft GSM, OGG Vorbis, OPUS, and SPEEX. Corresponding to each format, the dataset contains the file fragments of audio files with different compression settings. For each pair of file format and compression setting, 210 file fragments are provided. Totally, the dataset contains 20,160 file fragments. |
---|