Cargando…
Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information
The widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server noise and affect radiologists' judgment and conf...
Autores principales: | Tang, Chao, Li, Jie, Wang, Linyuan, Li, Ziheng, Jiang, Lingyun, Cai, Ailong, Zhang, Wenkun, Liang, Ningning, Li, Lei, Yan, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925923/ https://www.ncbi.nlm.nih.gov/pubmed/31885686 http://dx.doi.org/10.1155/2019/8639825 |
Ejemplares similares
-
A selective kernel-based cycle-consistent generative adversarial network for unpaired low-dose CT denoising
por: Tan, Chaoqun, et al.
Publicado: (2022) -
Promising Generative Adversarial Network Based Sinogram Inpainting Method for Ultra-Limited-Angle Computed Tomography Imaging
por: Li, Ziheng, et al.
Publicado: (2019) -
Prediction of atomic stress fields using cycle-consistent adversarial neural networks based on unpaired and unmatched sparse datasets
por: Buehler, Markus J.
Publicado: (2022) -
Correction to: Unpaired Image-to-Image Translation Using Adversarial Consistency Loss
por: Zhao, Yihao, et al.
Publicado: (2021) -
Path Generator with Unpaired Samples Employing Generative Adversarial Networks
por: Maldonado-Romo, Javier, et al.
Publicado: (2022)