Cargando…
Isothermal titration calorimetry and surface plasmon resonance analysis using the dynamic approach
Biophysical techniques such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) are routinely used to ascertain the global binding mechanisms of protein-protein or protein-ligand interaction. Recently, Dumas etal, have explicitly modelled the instrument response of the liga...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926116/ https://www.ncbi.nlm.nih.gov/pubmed/31890903 http://dx.doi.org/10.1016/j.bbrep.2019.100712 |
_version_ | 1783482032185147392 |
---|---|
author | Krishnamoorthy, Ganesh Kumar Alluvada, Prashanth Hameed Mohammed Sherieff, Shahul Kwa, Timothy Krishnamoorthy, Janarthanan |
author_facet | Krishnamoorthy, Ganesh Kumar Alluvada, Prashanth Hameed Mohammed Sherieff, Shahul Kwa, Timothy Krishnamoorthy, Janarthanan |
author_sort | Krishnamoorthy, Ganesh Kumar |
collection | PubMed |
description | Biophysical techniques such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) are routinely used to ascertain the global binding mechanisms of protein-protein or protein-ligand interaction. Recently, Dumas etal, have explicitly modelled the instrument response of the ligand dilution and analysed the ITC thermogram to obtain kinetic rate constants. Adopting a similar approach, we have integrated the dynamic instrument response with the binding mechanism to simulate the ITC profiles of equivalent and independent binding sites, equivalent and sequential binding sites and aggregating systems. The results were benchmarked against the standard commercial software Origin-ITC. Further, the experimental ITC chromatograms of 2′-CMP + RNASE and BH3I-1 + hBCL(XL) interactions were analysed and shown to be comparable with that of the conventional analysis. Dynamic approach was applied to simulate the SPR profiles of a two-state model, and could reproduce the experimental profile accurately. |
format | Online Article Text |
id | pubmed-6926116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69261162019-12-30 Isothermal titration calorimetry and surface plasmon resonance analysis using the dynamic approach Krishnamoorthy, Ganesh Kumar Alluvada, Prashanth Hameed Mohammed Sherieff, Shahul Kwa, Timothy Krishnamoorthy, Janarthanan Biochem Biophys Rep Research Article Biophysical techniques such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) are routinely used to ascertain the global binding mechanisms of protein-protein or protein-ligand interaction. Recently, Dumas etal, have explicitly modelled the instrument response of the ligand dilution and analysed the ITC thermogram to obtain kinetic rate constants. Adopting a similar approach, we have integrated the dynamic instrument response with the binding mechanism to simulate the ITC profiles of equivalent and independent binding sites, equivalent and sequential binding sites and aggregating systems. The results were benchmarked against the standard commercial software Origin-ITC. Further, the experimental ITC chromatograms of 2′-CMP + RNASE and BH3I-1 + hBCL(XL) interactions were analysed and shown to be comparable with that of the conventional analysis. Dynamic approach was applied to simulate the SPR profiles of a two-state model, and could reproduce the experimental profile accurately. Elsevier 2019-12-17 /pmc/articles/PMC6926116/ /pubmed/31890903 http://dx.doi.org/10.1016/j.bbrep.2019.100712 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Krishnamoorthy, Ganesh Kumar Alluvada, Prashanth Hameed Mohammed Sherieff, Shahul Kwa, Timothy Krishnamoorthy, Janarthanan Isothermal titration calorimetry and surface plasmon resonance analysis using the dynamic approach |
title | Isothermal titration calorimetry and surface plasmon resonance analysis using the dynamic approach |
title_full | Isothermal titration calorimetry and surface plasmon resonance analysis using the dynamic approach |
title_fullStr | Isothermal titration calorimetry and surface plasmon resonance analysis using the dynamic approach |
title_full_unstemmed | Isothermal titration calorimetry and surface plasmon resonance analysis using the dynamic approach |
title_short | Isothermal titration calorimetry and surface plasmon resonance analysis using the dynamic approach |
title_sort | isothermal titration calorimetry and surface plasmon resonance analysis using the dynamic approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926116/ https://www.ncbi.nlm.nih.gov/pubmed/31890903 http://dx.doi.org/10.1016/j.bbrep.2019.100712 |
work_keys_str_mv | AT krishnamoorthyganeshkumar isothermaltitrationcalorimetryandsurfaceplasmonresonanceanalysisusingthedynamicapproach AT alluvadaprashanth isothermaltitrationcalorimetryandsurfaceplasmonresonanceanalysisusingthedynamicapproach AT hameedmohammedsherieffshahul isothermaltitrationcalorimetryandsurfaceplasmonresonanceanalysisusingthedynamicapproach AT kwatimothy isothermaltitrationcalorimetryandsurfaceplasmonresonanceanalysisusingthedynamicapproach AT krishnamoorthyjanarthanan isothermaltitrationcalorimetryandsurfaceplasmonresonanceanalysisusingthedynamicapproach |