Cargando…
Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum
The robust lignocellulose-solubilizing activity of C. thermocellum makes it a top candidate for consolidated bioprocessing for biofuel production. Genetic techniques for C. thermocellum have lagged behind model organisms thus limiting attempts to improve biofuel production. To improve our ability to...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926293/ https://www.ncbi.nlm.nih.gov/pubmed/31890588 http://dx.doi.org/10.1016/j.mec.2019.e00116 |
_version_ | 1783482065304420352 |
---|---|
author | Walker, Julie E. Lanahan, Anthony A. Zheng, Tianyong Toruno, Camilo Lynd, Lee R. Cameron, Jeffrey C. Olson, Daniel G. Eckert, Carrie A. |
author_facet | Walker, Julie E. Lanahan, Anthony A. Zheng, Tianyong Toruno, Camilo Lynd, Lee R. Cameron, Jeffrey C. Olson, Daniel G. Eckert, Carrie A. |
author_sort | Walker, Julie E. |
collection | PubMed |
description | The robust lignocellulose-solubilizing activity of C. thermocellum makes it a top candidate for consolidated bioprocessing for biofuel production. Genetic techniques for C. thermocellum have lagged behind model organisms thus limiting attempts to improve biofuel production. To improve our ability to engineer C. thermocellum, we characterized a native Type I–B and heterologous Type II Clustered Regularly-Interspaced Short Palindromic Repeat (CRISPR)/cas (CRISPR associated) systems. We repurposed the native Type I–B system for genome editing. We tested three thermophilic Cas9 variants (Type II) and found that GeoCas9, isolated from Geobacillus stearothermophilus, is active in C. thermocellum. We employed CRISPR-mediated homology directed repair to introduce a nonsense mutation into pyrF. For both editing systems, homologous recombination between the repair template and the genome appeared to be the limiting step. To overcome this limitation, we tested three novel thermophilic recombinases and demonstrated that exo/beta homologs, isolated from Acidithiobacillus caldus, are functional in C. thermocellum. For the Type I–B system an engineered strain, termed LL1586, yielded 40% genome editing efficiency at the pyrF locus and when recombineering machinery was expressed this increased to 71%. For the Type II GeoCas9 system, 12.5% genome editing efficiency was observed and when recombineering machinery was expressed, this increased to 94%. By combining the thermophilic CRISPR system (either Type I–B or Type II) with the recombinases, we developed a new tool that allows for efficient CRISPR editing. We are now poised to enable CRISPR technologies to better engineer C. thermocellum for both increased lignocellulose degradation and biofuel production. |
format | Online Article Text |
id | pubmed-6926293 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69262932019-12-30 Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum Walker, Julie E. Lanahan, Anthony A. Zheng, Tianyong Toruno, Camilo Lynd, Lee R. Cameron, Jeffrey C. Olson, Daniel G. Eckert, Carrie A. Metab Eng Commun Article The robust lignocellulose-solubilizing activity of C. thermocellum makes it a top candidate for consolidated bioprocessing for biofuel production. Genetic techniques for C. thermocellum have lagged behind model organisms thus limiting attempts to improve biofuel production. To improve our ability to engineer C. thermocellum, we characterized a native Type I–B and heterologous Type II Clustered Regularly-Interspaced Short Palindromic Repeat (CRISPR)/cas (CRISPR associated) systems. We repurposed the native Type I–B system for genome editing. We tested three thermophilic Cas9 variants (Type II) and found that GeoCas9, isolated from Geobacillus stearothermophilus, is active in C. thermocellum. We employed CRISPR-mediated homology directed repair to introduce a nonsense mutation into pyrF. For both editing systems, homologous recombination between the repair template and the genome appeared to be the limiting step. To overcome this limitation, we tested three novel thermophilic recombinases and demonstrated that exo/beta homologs, isolated from Acidithiobacillus caldus, are functional in C. thermocellum. For the Type I–B system an engineered strain, termed LL1586, yielded 40% genome editing efficiency at the pyrF locus and when recombineering machinery was expressed this increased to 71%. For the Type II GeoCas9 system, 12.5% genome editing efficiency was observed and when recombineering machinery was expressed, this increased to 94%. By combining the thermophilic CRISPR system (either Type I–B or Type II) with the recombinases, we developed a new tool that allows for efficient CRISPR editing. We are now poised to enable CRISPR technologies to better engineer C. thermocellum for both increased lignocellulose degradation and biofuel production. Elsevier 2019-11-28 /pmc/articles/PMC6926293/ /pubmed/31890588 http://dx.doi.org/10.1016/j.mec.2019.e00116 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Walker, Julie E. Lanahan, Anthony A. Zheng, Tianyong Toruno, Camilo Lynd, Lee R. Cameron, Jeffrey C. Olson, Daniel G. Eckert, Carrie A. Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum |
title | Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum |
title_full | Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum |
title_fullStr | Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum |
title_full_unstemmed | Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum |
title_short | Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum |
title_sort | development of both type i–b and type ii crispr/cas genome editing systems in the cellulolytic bacterium clostridium thermocellum |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926293/ https://www.ncbi.nlm.nih.gov/pubmed/31890588 http://dx.doi.org/10.1016/j.mec.2019.e00116 |
work_keys_str_mv | AT walkerjuliee developmentofbothtypeibandtypeiicrisprcasgenomeeditingsystemsinthecellulolyticbacteriumclostridiumthermocellum AT lanahananthonya developmentofbothtypeibandtypeiicrisprcasgenomeeditingsystemsinthecellulolyticbacteriumclostridiumthermocellum AT zhengtianyong developmentofbothtypeibandtypeiicrisprcasgenomeeditingsystemsinthecellulolyticbacteriumclostridiumthermocellum AT torunocamilo developmentofbothtypeibandtypeiicrisprcasgenomeeditingsystemsinthecellulolyticbacteriumclostridiumthermocellum AT lyndleer developmentofbothtypeibandtypeiicrisprcasgenomeeditingsystemsinthecellulolyticbacteriumclostridiumthermocellum AT cameronjeffreyc developmentofbothtypeibandtypeiicrisprcasgenomeeditingsystemsinthecellulolyticbacteriumclostridiumthermocellum AT olsondanielg developmentofbothtypeibandtypeiicrisprcasgenomeeditingsystemsinthecellulolyticbacteriumclostridiumthermocellum AT eckertcarriea developmentofbothtypeibandtypeiicrisprcasgenomeeditingsystemsinthecellulolyticbacteriumclostridiumthermocellum |