Cargando…
Alternative causal inference methods in population health research: Evaluating tradeoffs and triangulating evidence
Population health researchers from different fields often address similar substantive questions but rely on different study designs, reflecting their home disciplines. This is especially true in studies involving causal inference, for which semantic and substantive differences inhibit interdisciplin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926350/ https://www.ncbi.nlm.nih.gov/pubmed/31890846 http://dx.doi.org/10.1016/j.ssmph.2019.100526 |
_version_ | 1783482078436786176 |
---|---|
author | Matthay, Ellicott C. Hagan, Erin Gottlieb, Laura M. Tan, May Lynn Vlahov, David Adler, Nancy E. Glymour, M. Maria |
author_facet | Matthay, Ellicott C. Hagan, Erin Gottlieb, Laura M. Tan, May Lynn Vlahov, David Adler, Nancy E. Glymour, M. Maria |
author_sort | Matthay, Ellicott C. |
collection | PubMed |
description | Population health researchers from different fields often address similar substantive questions but rely on different study designs, reflecting their home disciplines. This is especially true in studies involving causal inference, for which semantic and substantive differences inhibit interdisciplinary dialogue and collaboration. In this paper, we group nonrandomized study designs into two categories: those that use confounder-control (such as regression adjustment or propensity score matching) and those that rely on an instrument (such as instrumental variables, regression discontinuity, or differences-in-differences approaches). Using the Shadish, Cook, and Campbell framework for evaluating threats to validity, we contrast the assumptions, strengths, and limitations of these two approaches and illustrate differences with examples from the literature on education and health. Across disciplines, all methods to test a hypothesized causal relationship involve unverifiable assumptions, and rarely is there clear justification for exclusive reliance on one method. Each method entails trade-offs between statistical power, internal validity, measurement quality, and generalizability. The choice between confounder-control and instrument-based methods should be guided by these tradeoffs and consideration of the most important limitations of previous work in the area. Our goals are to foster common understanding of the methods available for causal inference in population health research and the tradeoffs between them; to encourage researchers to objectively evaluate what can be learned from methods outside one's home discipline; and to facilitate the selection of methods that best answer the investigator's scientific questions. |
format | Online Article Text |
id | pubmed-6926350 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69263502019-12-30 Alternative causal inference methods in population health research: Evaluating tradeoffs and triangulating evidence Matthay, Ellicott C. Hagan, Erin Gottlieb, Laura M. Tan, May Lynn Vlahov, David Adler, Nancy E. Glymour, M. Maria SSM Popul Health Article Population health researchers from different fields often address similar substantive questions but rely on different study designs, reflecting their home disciplines. This is especially true in studies involving causal inference, for which semantic and substantive differences inhibit interdisciplinary dialogue and collaboration. In this paper, we group nonrandomized study designs into two categories: those that use confounder-control (such as regression adjustment or propensity score matching) and those that rely on an instrument (such as instrumental variables, regression discontinuity, or differences-in-differences approaches). Using the Shadish, Cook, and Campbell framework for evaluating threats to validity, we contrast the assumptions, strengths, and limitations of these two approaches and illustrate differences with examples from the literature on education and health. Across disciplines, all methods to test a hypothesized causal relationship involve unverifiable assumptions, and rarely is there clear justification for exclusive reliance on one method. Each method entails trade-offs between statistical power, internal validity, measurement quality, and generalizability. The choice between confounder-control and instrument-based methods should be guided by these tradeoffs and consideration of the most important limitations of previous work in the area. Our goals are to foster common understanding of the methods available for causal inference in population health research and the tradeoffs between them; to encourage researchers to objectively evaluate what can be learned from methods outside one's home discipline; and to facilitate the selection of methods that best answer the investigator's scientific questions. Elsevier 2019-12-09 /pmc/articles/PMC6926350/ /pubmed/31890846 http://dx.doi.org/10.1016/j.ssmph.2019.100526 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Matthay, Ellicott C. Hagan, Erin Gottlieb, Laura M. Tan, May Lynn Vlahov, David Adler, Nancy E. Glymour, M. Maria Alternative causal inference methods in population health research: Evaluating tradeoffs and triangulating evidence |
title | Alternative causal inference methods in population health research: Evaluating tradeoffs and triangulating evidence |
title_full | Alternative causal inference methods in population health research: Evaluating tradeoffs and triangulating evidence |
title_fullStr | Alternative causal inference methods in population health research: Evaluating tradeoffs and triangulating evidence |
title_full_unstemmed | Alternative causal inference methods in population health research: Evaluating tradeoffs and triangulating evidence |
title_short | Alternative causal inference methods in population health research: Evaluating tradeoffs and triangulating evidence |
title_sort | alternative causal inference methods in population health research: evaluating tradeoffs and triangulating evidence |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926350/ https://www.ncbi.nlm.nih.gov/pubmed/31890846 http://dx.doi.org/10.1016/j.ssmph.2019.100526 |
work_keys_str_mv | AT matthayellicottc alternativecausalinferencemethodsinpopulationhealthresearchevaluatingtradeoffsandtriangulatingevidence AT haganerin alternativecausalinferencemethodsinpopulationhealthresearchevaluatingtradeoffsandtriangulatingevidence AT gottlieblauram alternativecausalinferencemethodsinpopulationhealthresearchevaluatingtradeoffsandtriangulatingevidence AT tanmaylynn alternativecausalinferencemethodsinpopulationhealthresearchevaluatingtradeoffsandtriangulatingevidence AT vlahovdavid alternativecausalinferencemethodsinpopulationhealthresearchevaluatingtradeoffsandtriangulatingevidence AT adlernancye alternativecausalinferencemethodsinpopulationhealthresearchevaluatingtradeoffsandtriangulatingevidence AT glymourmmaria alternativecausalinferencemethodsinpopulationhealthresearchevaluatingtradeoffsandtriangulatingevidence |