Cargando…
Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway
Quinones can modify biological molecules through both redox-cycling reactions that yield radicals (semiquinone, superoxide and hydroxyl) and via covalent adduction to nucleophiles (e.g. thiols and amines). Kinetic data indicate that Cys residues in GSH and proteins are major targets. In the studies...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926358/ https://www.ncbi.nlm.nih.gov/pubmed/31926625 http://dx.doi.org/10.1016/j.redox.2019.101400 |
_version_ | 1783482080296960000 |
---|---|
author | Shu, Nan Hägglund, Per Cai, Huan Hawkins, Clare L. Davies, Michael J. |
author_facet | Shu, Nan Hägglund, Per Cai, Huan Hawkins, Clare L. Davies, Michael J. |
author_sort | Shu, Nan |
collection | PubMed |
description | Quinones can modify biological molecules through both redox-cycling reactions that yield radicals (semiquinone, superoxide and hydroxyl) and via covalent adduction to nucleophiles (e.g. thiols and amines). Kinetic data indicate that Cys residues in GSH and proteins are major targets. In the studies reported here, the interactions of a prototypic quinone compound, p-benzoquinone (BQ), with the key redox protein, thioredoxin-1 (Trx1) were examined. BQ binds covalently with isolated Trx1 forming quinoprotein adducts, resulting in a concentration-dependent loss of enzyme activity and crosslink formation. Mass spectrometry peptide mass mapping data indicate that BQ forms adducts with all of the Trx1 Cys residues. Glutathione (GSH) reacts competitively with BQ, and thereby modulates the loss of activity and crosslink formation. Exposure of macrophage-like (J774A.1) cells to BQ results in a dose-dependent loss of Trx and thioredoxin reductase (TrxR) activities, quinoprotein formation, and a decrease in GSH levels without a concomitant increase in oxidized glutathione. GSH depletion aggravates the loss of Trx and TrxR activity. These data are consistent with adduction of GSH to BQ being a primary protective pathway. Reaction of BQ with Trx in cells resulted in the activation of apoptosis signal-regulating kinase 1 (ASK1), and p38 mitogen-activated protein kinase (MAPK) leading to apoptotic cell death. These data suggest that BQ reacts covalently with Cys residues in Trx, including at the active site, leading to enzyme inactivation and protein cross-linking. Modification of the Cys residues in Trx also results in activation of the ASK1/p38-MAPK signalling pathway and promotion of apoptotic cell death. |
format | Online Article Text |
id | pubmed-6926358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69263582019-12-30 Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway Shu, Nan Hägglund, Per Cai, Huan Hawkins, Clare L. Davies, Michael J. Redox Biol Research Paper Quinones can modify biological molecules through both redox-cycling reactions that yield radicals (semiquinone, superoxide and hydroxyl) and via covalent adduction to nucleophiles (e.g. thiols and amines). Kinetic data indicate that Cys residues in GSH and proteins are major targets. In the studies reported here, the interactions of a prototypic quinone compound, p-benzoquinone (BQ), with the key redox protein, thioredoxin-1 (Trx1) were examined. BQ binds covalently with isolated Trx1 forming quinoprotein adducts, resulting in a concentration-dependent loss of enzyme activity and crosslink formation. Mass spectrometry peptide mass mapping data indicate that BQ forms adducts with all of the Trx1 Cys residues. Glutathione (GSH) reacts competitively with BQ, and thereby modulates the loss of activity and crosslink formation. Exposure of macrophage-like (J774A.1) cells to BQ results in a dose-dependent loss of Trx and thioredoxin reductase (TrxR) activities, quinoprotein formation, and a decrease in GSH levels without a concomitant increase in oxidized glutathione. GSH depletion aggravates the loss of Trx and TrxR activity. These data are consistent with adduction of GSH to BQ being a primary protective pathway. Reaction of BQ with Trx in cells resulted in the activation of apoptosis signal-regulating kinase 1 (ASK1), and p38 mitogen-activated protein kinase (MAPK) leading to apoptotic cell death. These data suggest that BQ reacts covalently with Cys residues in Trx, including at the active site, leading to enzyme inactivation and protein cross-linking. Modification of the Cys residues in Trx also results in activation of the ASK1/p38-MAPK signalling pathway and promotion of apoptotic cell death. Elsevier 2019-12-06 /pmc/articles/PMC6926358/ /pubmed/31926625 http://dx.doi.org/10.1016/j.redox.2019.101400 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Shu, Nan Hägglund, Per Cai, Huan Hawkins, Clare L. Davies, Michael J. Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway |
title | Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway |
title_full | Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway |
title_fullStr | Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway |
title_full_unstemmed | Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway |
title_short | Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway |
title_sort | modification of cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ask1/p38-mapk signalling pathway |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926358/ https://www.ncbi.nlm.nih.gov/pubmed/31926625 http://dx.doi.org/10.1016/j.redox.2019.101400 |
work_keys_str_mv | AT shunan modificationofcysresiduesinhumanthioredoxin1bypbenzoquinonecausesinhibitionofitscatalyticactivityandactivationoftheask1p38mapksignallingpathway AT hagglundper modificationofcysresiduesinhumanthioredoxin1bypbenzoquinonecausesinhibitionofitscatalyticactivityandactivationoftheask1p38mapksignallingpathway AT caihuan modificationofcysresiduesinhumanthioredoxin1bypbenzoquinonecausesinhibitionofitscatalyticactivityandactivationoftheask1p38mapksignallingpathway AT hawkinsclarel modificationofcysresiduesinhumanthioredoxin1bypbenzoquinonecausesinhibitionofitscatalyticactivityandactivationoftheask1p38mapksignallingpathway AT daviesmichaelj modificationofcysresiduesinhumanthioredoxin1bypbenzoquinonecausesinhibitionofitscatalyticactivityandactivationoftheask1p38mapksignallingpathway |