Cargando…
Effect of Compound Fields of Ultrasonic Vibration and Applied Pressure on the 3D Microstructure and Tensile Properties of Recycled Al-Cu-Mn-Fe-Si Alloys
The effect of compound fields of ultrasonic vibration and applied pressure (UV+AP) on three-dimensional (3D) microstructure and tensile properties of recycled Al-Cu-Mn-Fe-Si alloys was systematically studied using conventional two-dimensional (2D) microscopy, synchrotron X-ray tomography, and tensil...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926688/ https://www.ncbi.nlm.nih.gov/pubmed/31779158 http://dx.doi.org/10.3390/ma12233904 |
Sumario: | The effect of compound fields of ultrasonic vibration and applied pressure (UV+AP) on three-dimensional (3D) microstructure and tensile properties of recycled Al-Cu-Mn-Fe-Si alloys was systematically studied using conventional two-dimensional (2D) microscopy, synchrotron X-ray tomography, and tensile test. The properties of UV+AP treated alloys with the pouring temperature of 740, 710 and 680 °C were compared when those alloys achieved after gravity casting. After UV+AP treatment, the alloy with pouring temperature of 710 °C show the smallest grain size. Also, the sizes of Fe-rich phases and Al(2)Cu are greatly reduced and their 3D morphologies are compacted. The mechanical properties of UV+AP treated alloys are relatively higher than those measured for gravity cast equivalents. This improvement can be explained by the synergistic effect of acoustic cavitation, acoustic streaming, and force-feeding, which resulted in the dendrite fragmentation, uniform solute distribution, and microstructural refinement. The Orowan strengthening and solution strengthening were identified as the main strengthening mechanisms. |
---|