Cargando…

Effect of Relative Density on Compressive Load Response of Crumpled Aluminium Foil Mesh

In recent years, a large number of metal foams and porous metals have been developed. Due to the high cost of these materials alternative manufacturing methods for cellular metallic materials are being explored. Crumpled metallic foil meshes, manufactured via die compression techniques, are evolving...

Descripción completa

Detalles Bibliográficos
Autores principales: Hughes, David, Amalu, Emeka H., Pak, Tannaz, Kennedy, Ryan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926731/
https://www.ncbi.nlm.nih.gov/pubmed/31816908
http://dx.doi.org/10.3390/ma12234018
Descripción
Sumario:In recent years, a large number of metal foams and porous metals have been developed. Due to the high cost of these materials alternative manufacturing methods for cellular metallic materials are being explored. Crumpled metallic foil meshes, manufactured via die compression techniques, are evolving as a potential alternative method. However, the non-availability of sufficient data on their load response is limiting their uptake. Uniaxial compressive load response of crumpled aluminium foil meshes (CAFMs) of varying densities, forged by open and closed die compression, are studied. A 0.05 mm thick aluminium sheet mesh, manufactured by the expanded metal process is used. X-ray computed micro-tomography is employed to image the CAFM’s internal cellular structure. The stress-strain relation demonstrates that the CAFMs produce identical load response profile irrespective of their relative density. Power law functions [Formula: see text] and [Formula: see text] define the relationships between real Young’s Modulus [Formula: see text] and effective yield strength, [Formula: see text]. The study provides new knowledge on the effect of relative density on the compressive properties of CAFMs which have applications across lightweight structural design.