Cargando…
Effect of Sintering on In Vivo Biological Performance of Chemically Deproteinized Bovine Hydroxyapatite
The influence of the manufacturing process on physicochemical properties and biological performance of xenogenic biomaterials has been extensively studied, but its quantification on bone-to-material contact remains poorly investigated. The aim of this study was to investigate the effect of different...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926783/ https://www.ncbi.nlm.nih.gov/pubmed/31795201 http://dx.doi.org/10.3390/ma12233946 |
_version_ | 1783482170469253120 |
---|---|
author | De Carvalho, Bruno Rompen, Eric Lecloux, Geoffrey Schupbach, Peter Dory, Emilie Art, Jean-François Lambert, France |
author_facet | De Carvalho, Bruno Rompen, Eric Lecloux, Geoffrey Schupbach, Peter Dory, Emilie Art, Jean-François Lambert, France |
author_sort | De Carvalho, Bruno |
collection | PubMed |
description | The influence of the manufacturing process on physicochemical properties and biological performance of xenogenic biomaterials has been extensively studied, but its quantification on bone-to-material contact remains poorly investigated. The aim of this study was to investigate the effect of different heat treatments of an experimental chemically-deproteinized bovine hydroxyapatite in vivo in terms of new bone formation and osteoconductivity. Protein-free hydroxyapatite from bovine origin was produced under sub-critical conditions and then either sintered at 820 °C or 1200 °C. Structural and morphological properties were assessed by scanning electron microscopy (SEM), measurement of surface area and X-ray diffractometry (XRD). The materials were then implanted in standardized alveolar bone defects in minipigs and histomorphometric evaluations were performed using non-decalcified sections. Marked topographical differences were observed by SEM analysis. As the sintering temperature of the experimental material increased, the surface area significantly decreased while crystallite size increased. In vivo samples showed that the highly sintered BHA presented a significantly lower percentage of newly formed bone than the unheated one (p = 0.009). In addition, the percentage of bone-to-material contact (BMC) was significantly lowered in the highly sintered group when compared to the unsintered (p = 0.01) and 820 °C sintered (p = 0.02) groups. Non-sintered or sintered at 820 °C BHA seems to maintain a certain surface roughness allowing better bone regeneration and BMC. On the contrary, sintering of BHA at 1200 °C has an effect on its morphological and structural characteristics and significantly modify its biological performance (osteoconductivity) and crystallinity. |
format | Online Article Text |
id | pubmed-6926783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69267832019-12-24 Effect of Sintering on In Vivo Biological Performance of Chemically Deproteinized Bovine Hydroxyapatite De Carvalho, Bruno Rompen, Eric Lecloux, Geoffrey Schupbach, Peter Dory, Emilie Art, Jean-François Lambert, France Materials (Basel) Article The influence of the manufacturing process on physicochemical properties and biological performance of xenogenic biomaterials has been extensively studied, but its quantification on bone-to-material contact remains poorly investigated. The aim of this study was to investigate the effect of different heat treatments of an experimental chemically-deproteinized bovine hydroxyapatite in vivo in terms of new bone formation and osteoconductivity. Protein-free hydroxyapatite from bovine origin was produced under sub-critical conditions and then either sintered at 820 °C or 1200 °C. Structural and morphological properties were assessed by scanning electron microscopy (SEM), measurement of surface area and X-ray diffractometry (XRD). The materials were then implanted in standardized alveolar bone defects in minipigs and histomorphometric evaluations were performed using non-decalcified sections. Marked topographical differences were observed by SEM analysis. As the sintering temperature of the experimental material increased, the surface area significantly decreased while crystallite size increased. In vivo samples showed that the highly sintered BHA presented a significantly lower percentage of newly formed bone than the unheated one (p = 0.009). In addition, the percentage of bone-to-material contact (BMC) was significantly lowered in the highly sintered group when compared to the unsintered (p = 0.01) and 820 °C sintered (p = 0.02) groups. Non-sintered or sintered at 820 °C BHA seems to maintain a certain surface roughness allowing better bone regeneration and BMC. On the contrary, sintering of BHA at 1200 °C has an effect on its morphological and structural characteristics and significantly modify its biological performance (osteoconductivity) and crystallinity. MDPI 2019-11-28 /pmc/articles/PMC6926783/ /pubmed/31795201 http://dx.doi.org/10.3390/ma12233946 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article De Carvalho, Bruno Rompen, Eric Lecloux, Geoffrey Schupbach, Peter Dory, Emilie Art, Jean-François Lambert, France Effect of Sintering on In Vivo Biological Performance of Chemically Deproteinized Bovine Hydroxyapatite |
title | Effect of Sintering on In Vivo Biological Performance of Chemically Deproteinized Bovine Hydroxyapatite |
title_full | Effect of Sintering on In Vivo Biological Performance of Chemically Deproteinized Bovine Hydroxyapatite |
title_fullStr | Effect of Sintering on In Vivo Biological Performance of Chemically Deproteinized Bovine Hydroxyapatite |
title_full_unstemmed | Effect of Sintering on In Vivo Biological Performance of Chemically Deproteinized Bovine Hydroxyapatite |
title_short | Effect of Sintering on In Vivo Biological Performance of Chemically Deproteinized Bovine Hydroxyapatite |
title_sort | effect of sintering on in vivo biological performance of chemically deproteinized bovine hydroxyapatite |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926783/ https://www.ncbi.nlm.nih.gov/pubmed/31795201 http://dx.doi.org/10.3390/ma12233946 |
work_keys_str_mv | AT decarvalhobruno effectofsinteringoninvivobiologicalperformanceofchemicallydeproteinizedbovinehydroxyapatite AT rompeneric effectofsinteringoninvivobiologicalperformanceofchemicallydeproteinizedbovinehydroxyapatite AT leclouxgeoffrey effectofsinteringoninvivobiologicalperformanceofchemicallydeproteinizedbovinehydroxyapatite AT schupbachpeter effectofsinteringoninvivobiologicalperformanceofchemicallydeproteinizedbovinehydroxyapatite AT doryemilie effectofsinteringoninvivobiologicalperformanceofchemicallydeproteinizedbovinehydroxyapatite AT artjeanfrancois effectofsinteringoninvivobiologicalperformanceofchemicallydeproteinizedbovinehydroxyapatite AT lambertfrance effectofsinteringoninvivobiologicalperformanceofchemicallydeproteinizedbovinehydroxyapatite |