Cargando…

Heat Treatment, Impact Properties, and Fracture Behaviour of Ti-6Al-4V Alloy Produced by Powder Compact Extrusion

The mechanical properties of titanium and titanium alloys are very sensitive to processing, microstructure, and impurity levels. In this paper, a blended powder mixture of Ti-6Al-4V alloy was consolidated by powder compact extrusion that involved warm compaction, vacuum sintering, and hot extrusion....

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Ajit Pal, Yang, Fei, Torrens, Rob, Gabbitas, Brian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926856/
https://www.ncbi.nlm.nih.gov/pubmed/31766369
http://dx.doi.org/10.3390/ma12233824
Descripción
Sumario:The mechanical properties of titanium and titanium alloys are very sensitive to processing, microstructure, and impurity levels. In this paper, a blended powder mixture of Ti-6Al-4V alloy was consolidated by powder compact extrusion that involved warm compaction, vacuum sintering, and hot extrusion. The as-processed material with an oxygen content of 0.34 wt.% was subjected to various annealing treatments. The impact toughness of heat-treated material was determined using Charpy V-notch impact testing at room temperature. An emphasis was placed on establishing a relationship among fracture behaviour, microstructure, and the resulting properties of tested material. From the results, it is apparent that the highest impact toughness value of 19.3 J was achieved after α/β annealing and is comparable with typical values given in the literature for wrought Ti-6Al-4V. In terms of fracture behaviour, it is quite apparent that the crack propagation behaviour of powder-produced material is rather complex compared with the limited amount of data reported for ingot counterparts.