Cargando…
Bring More Data!—A Good Advice? Removing Separation in Logistic Regression by Increasing Sample Size
The parameters of logistic regression models are usually obtained by the method of maximum likelihood (ML). However, in analyses of small data sets or data sets with unbalanced outcomes or exposures, ML parameter estimates may not exist. This situation has been termed ‘separation’ as the two outcome...
Autores principales: | Šinkovec, Hana, Geroldinger, Angelika, Heinze, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926877/ https://www.ncbi.nlm.nih.gov/pubmed/31766753 http://dx.doi.org/10.3390/ijerph16234658 |
Ejemplares similares
-
To tune or not to tune, a case study of ridge logistic regression in small or sparse datasets
por: Šinkovec, Hana, et al.
Publicado: (2021) -
Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression
por: Joshi, Ashwini, et al.
Publicado: (2021) -
Sample size issues in multilevel logistic regression models
por: Ali, Amjad, et al.
Publicado: (2019) -
Bias in odds ratios by logistic regression modelling and sample size
por: Nemes, Szilard, et al.
Publicado: (2009) -
Goodness of fit for the logistic regression model using relative belief
por: Al-Labadi, Luai, et al.
Publicado: (2017)