Cargando…

Synthesis of X-Zeolite from Waste Basalt Powder and its Influencing Factors and Synthesis Mechanism

Traditional hydrothermal method (TH) and alkali fusion-assisted hydrothermal method (AFH) were evaluated for the preparation of zeolites from waste basalt powder by using NaOH as the activation reagent in this study. The synthesized products were characterized by BET, XRD, FTIR and SEM. The effects...

Descripción completa

Detalles Bibliográficos
Autores principales: Ke, Guojun, Shen, Haichen, Yang, Pengfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926885/
https://www.ncbi.nlm.nih.gov/pubmed/31779067
http://dx.doi.org/10.3390/ma12233895
Descripción
Sumario:Traditional hydrothermal method (TH) and alkali fusion-assisted hydrothermal method (AFH) were evaluated for the preparation of zeolites from waste basalt powder by using NaOH as the activation reagent in this study. The synthesized products were characterized by BET, XRD, FTIR and SEM. The effects of acid treatment, alkali/basalt ratio, calcination temperature and crystallization temperature on the synthesis process were studied. The results showed that AFH successfully synthesized zeolite X with higher crystallinity and no zeolite was formed by TH. The specific surface area of synthetic zeolite X was 486.46 m(2)·g(−1), which was much larger than that of original basalt powder (12.12 m(2)·g(−1)). Acid treatment and calcination temperature had no effect on zeolite types, but acid treatment improved the yield and quality of zeolite. Alkali/basalt ratio and crystallization temperature not only affected the crystallinity of synthesized zeolites but also affected its type. The optimum synthesis condition of zeolite X are as follows: acid treatment of 5 wt% HCl solution, NaOH/basalt ratio of 1:1, a calcination temperature of 650 °C and crystallization temperature of 120 °C. The work shows that basalt can be used as a raw material to prepare zeolite.