Cargando…
A network embedding model for pathogenic genes prediction by multi-path random walking on heterogeneous network
BACKGROUND: Prediction of pathogenic genes is crucial for disease prevention, diagnosis, and treatment. But traditional genetic localization methods are often technique-difficulty and time-consuming. With the development of computer science, computational biology has gradually become one of the main...
Autores principales: | Xu, Bo, Liu, Yu, Yu, Shuo, Wang, Lei, Dong, Jie, Lin, Hongfei, Yang, Zhihao, Wang, Jian, Xia, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927107/ https://www.ncbi.nlm.nih.gov/pubmed/31865919 http://dx.doi.org/10.1186/s12920-019-0627-z |
Ejemplares similares
-
HeteEdgeWalk: A Heterogeneous Edge Memory Random Walk for Heterogeneous Information Network Embedding
por: Liu, Zhenpeng, et al.
Publicado: (2023) -
Relation path feature embedding based convolutional neural network method for drug discovery
por: Zhao, Di, et al.
Publicado: (2019) -
A multi-view contrastive learning for heterogeneous network embedding
por: Li, Qi, et al.
Publicado: (2023) -
Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks
por: Liu, Xiaoxia, et al.
Publicado: (2018) -
Virtual Network Embedding for Multi-Domain Heterogeneous Converged Optical Networks: Issues and Challenges
por: Zong, Yue, et al.
Publicado: (2020)