Cargando…
UGM: a more stable procedure for large-scale multiple testing problems, new solutions to identify oncogene
Variations of gene expression levels play an important role in tumors. There are numerous methods to identify differentially expressed genes in high-throughput sequencing. Several algorithms endeavor to identify distinctive genetic patterns susceptable to particular diseases. Although these processe...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927121/ https://www.ncbi.nlm.nih.gov/pubmed/31865918 http://dx.doi.org/10.1186/s12976-019-0117-1 |
Sumario: | Variations of gene expression levels play an important role in tumors. There are numerous methods to identify differentially expressed genes in high-throughput sequencing. Several algorithms endeavor to identify distinctive genetic patterns susceptable to particular diseases. Although these processes have been proved successful, the probability that the number of non-differentially expressed genes measured by false discovery rate (FDR) has a large standard deviation, and the misidentification rate (type I error) grows rapidly when the number of genes to be detected become larger. In this study we developed a new method, Unit Gamma Measurement (UGM), accounting for multiple hypotheses test statistics distribution, which could reduce the dependency problem. Simulated expression profile data and breast cancer RNA-Seq data were utilized to testify the accuracy of UGM. The results show that the number of non-differentially expressed genes identified by the UGM is very close to the real-evidence data, and the UGM also has a smaller standard error, range, quartile range and RMS error. In addition, the UGM can be used to screen many breast cancer-associated genes, such as BRCA1, BRCA2, PTEN, BRIP1, etc., provides better accuracy, robustness and efficiency, the method of identification differentially expressed genes in high-throughput sequencing. |
---|