Cargando…
Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model
Single-cell RNA-Seq (scRNA-Seq) profiles gene expression of individual cells. Recent scRNA-Seq datasets have incorporated unique molecular identifiers (UMIs). Using negative controls, we show UMI counts follow multinomial sampling with no zero inflation. Current normalization procedures such as log...
Autores principales: | Townes, F. William, Hicks, Stephanie C., Aryee, Martin J., Irizarry, Rafael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927135/ https://www.ncbi.nlm.nih.gov/pubmed/31870412 http://dx.doi.org/10.1186/s13059-019-1861-6 |
Ejemplares similares
-
Author Correction: Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model
por: Townes, F. William, et al.
Publicado: (2020) -
Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers
por: Townes, F. William, et al.
Publicado: (2020) -
VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder
por: Wang, Dongfang, et al.
Publicado: (2018) -
Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data
por: Liu, Wei, et al.
Publicado: (2022) -
scFseCluster: a feature selection-enhanced clustering for single-cell RNA-seq data
por: Wang, Zongqin, et al.
Publicado: (2023)