Cargando…
RADAR: differential analysis of MeRIP-seq data with a random effect model
Epitranscriptome profiling using MeRIP-seq is a powerful technique for in vivo functional studies of reversible RNA modifications. We develop RADAR, a comprehensive analytical tool for detecting differentially methylated loci in MeRIP-seq data. RADAR enables accurate identification of altered methyl...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927177/ https://www.ncbi.nlm.nih.gov/pubmed/31870409 http://dx.doi.org/10.1186/s13059-019-1915-9 |
_version_ | 1783482257346920448 |
---|---|
author | Zhang, Zijie Zhan, Qi Eckert, Mark Zhu, Allen Chryplewicz, Agnieszka De Jesus, Dario F. Ren, Decheng Kulkarni, Rohit N. Lengyel, Ernst He, Chuan Chen, Mengjie |
author_facet | Zhang, Zijie Zhan, Qi Eckert, Mark Zhu, Allen Chryplewicz, Agnieszka De Jesus, Dario F. Ren, Decheng Kulkarni, Rohit N. Lengyel, Ernst He, Chuan Chen, Mengjie |
author_sort | Zhang, Zijie |
collection | PubMed |
description | Epitranscriptome profiling using MeRIP-seq is a powerful technique for in vivo functional studies of reversible RNA modifications. We develop RADAR, a comprehensive analytical tool for detecting differentially methylated loci in MeRIP-seq data. RADAR enables accurate identification of altered methylation sites by accommodating variability of pre-immunoprecipitation expression level and post-immunoprecipitation count using different strategies. In addition, it is compatible with complex study design when covariates need to be incorporated in the analysis. Through simulation and real dataset analyses, we show that RADAR leads to more accurate and reproducible differential methylation analysis results than alternatives, which is available at https://github.com/scottzijiezhang/RADAR. |
format | Online Article Text |
id | pubmed-6927177 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-69271772019-12-30 RADAR: differential analysis of MeRIP-seq data with a random effect model Zhang, Zijie Zhan, Qi Eckert, Mark Zhu, Allen Chryplewicz, Agnieszka De Jesus, Dario F. Ren, Decheng Kulkarni, Rohit N. Lengyel, Ernst He, Chuan Chen, Mengjie Genome Biol Method Epitranscriptome profiling using MeRIP-seq is a powerful technique for in vivo functional studies of reversible RNA modifications. We develop RADAR, a comprehensive analytical tool for detecting differentially methylated loci in MeRIP-seq data. RADAR enables accurate identification of altered methylation sites by accommodating variability of pre-immunoprecipitation expression level and post-immunoprecipitation count using different strategies. In addition, it is compatible with complex study design when covariates need to be incorporated in the analysis. Through simulation and real dataset analyses, we show that RADAR leads to more accurate and reproducible differential methylation analysis results than alternatives, which is available at https://github.com/scottzijiezhang/RADAR. BioMed Central 2019-12-23 /pmc/articles/PMC6927177/ /pubmed/31870409 http://dx.doi.org/10.1186/s13059-019-1915-9 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Method Zhang, Zijie Zhan, Qi Eckert, Mark Zhu, Allen Chryplewicz, Agnieszka De Jesus, Dario F. Ren, Decheng Kulkarni, Rohit N. Lengyel, Ernst He, Chuan Chen, Mengjie RADAR: differential analysis of MeRIP-seq data with a random effect model |
title | RADAR: differential analysis of MeRIP-seq data with a random effect model |
title_full | RADAR: differential analysis of MeRIP-seq data with a random effect model |
title_fullStr | RADAR: differential analysis of MeRIP-seq data with a random effect model |
title_full_unstemmed | RADAR: differential analysis of MeRIP-seq data with a random effect model |
title_short | RADAR: differential analysis of MeRIP-seq data with a random effect model |
title_sort | radar: differential analysis of merip-seq data with a random effect model |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927177/ https://www.ncbi.nlm.nih.gov/pubmed/31870409 http://dx.doi.org/10.1186/s13059-019-1915-9 |
work_keys_str_mv | AT zhangzijie radardifferentialanalysisofmeripseqdatawitharandomeffectmodel AT zhanqi radardifferentialanalysisofmeripseqdatawitharandomeffectmodel AT eckertmark radardifferentialanalysisofmeripseqdatawitharandomeffectmodel AT zhuallen radardifferentialanalysisofmeripseqdatawitharandomeffectmodel AT chryplewiczagnieszka radardifferentialanalysisofmeripseqdatawitharandomeffectmodel AT dejesusdariof radardifferentialanalysisofmeripseqdatawitharandomeffectmodel AT rendecheng radardifferentialanalysisofmeripseqdatawitharandomeffectmodel AT kulkarnirohitn radardifferentialanalysisofmeripseqdatawitharandomeffectmodel AT lengyelernst radardifferentialanalysisofmeripseqdatawitharandomeffectmodel AT hechuan radardifferentialanalysisofmeripseqdatawitharandomeffectmodel AT chenmengjie radardifferentialanalysisofmeripseqdatawitharandomeffectmodel |