Cargando…
Toward insights on determining factors for high activity in antimicrobial peptides via machine learning
The continued and general rise of antibiotic resistance in pathogenic microbes is a well-recognized global threat. Host defense peptides (HDPs), a component of the innate immune system have demonstrated promising potential to become a next generation antibiotic effective against a plethora of pathog...
Autores principales: | Li, Hao, Nantasenamat, Chanin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927346/ https://www.ncbi.nlm.nih.gov/pubmed/31875156 http://dx.doi.org/10.7717/peerj.8265 |
Ejemplares similares
-
Origin of aromatase inhibitory activity via proteochemometric modeling
por: Simeon, Saw, et al.
Publicado: (2016) -
ERpred: a web server for the prediction of subtype-specific estrogen receptor antagonists
por: Schaduangrat, Nalini, et al.
Publicado: (2021) -
Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking
por: Simeon, Saw, et al.
Publicado: (2016) -
Exploring the chemical space of influenza neuraminidase inhibitors
por: Anuwongcharoen, Nuttapat, et al.
Publicado: (2016) -
Unraveling the bioactivity of anticancer peptides as deduced from machine learning
por: Shoombuatong, Watshara, et al.
Publicado: (2018)