Cargando…
Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics
Inflammasomes are a group of multimolecular intracellular complexes assembled around several innate immune proteins. Recognition of a diverse range of microbial, stress and damage signals by inflammasomes results in direct activation of caspase‐1, which subsequently induces the only known form of se...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927484/ https://www.ncbi.nlm.nih.gov/pubmed/31850638 http://dx.doi.org/10.1111/prd.12269 |
_version_ | 1783482307033694208 |
---|---|
author | Marchesan, Julie T. Girnary, Mustafa Saadat Moss, Kevin Monaghan, Eugenia Timofeev Egnatz, Grant Joseph Jiao, Yizu Zhang, Shaoping Beck, Jim Swanson, Karen V. |
author_facet | Marchesan, Julie T. Girnary, Mustafa Saadat Moss, Kevin Monaghan, Eugenia Timofeev Egnatz, Grant Joseph Jiao, Yizu Zhang, Shaoping Beck, Jim Swanson, Karen V. |
author_sort | Marchesan, Julie T. |
collection | PubMed |
description | Inflammasomes are a group of multimolecular intracellular complexes assembled around several innate immune proteins. Recognition of a diverse range of microbial, stress and damage signals by inflammasomes results in direct activation of caspase‐1, which subsequently induces the only known form of secretion of active interleukin‐1β and interleukin‐18. Although the importance of interleukin‐1β in the periodontium is not questioned, the impact of inflammasomes in periodontal disease and its potential for therapeutics in periodontology is still in its very early stages. Increasing evidence in preclinical models and human data strongly implicate the involvement of inflammasomes in a number of inflammatory, autoinflammatory and autoimmune disorders. Here we review: (a) the currently known inflammasome functions, (b) clinical/preclinical data supporting inflammasome involvement in the context of periodontal and comorbid diseases and (c) potential therapies targeting inflammasomes. To clarify further the inflammasome involvement in periodontitis, we present analyses of data from a large clinical study (n = 5809) that measured the gingival crevicular fluid‐interleukin‐1β and grouped the participants based on current periodontal disease classifications. We review data on 4910 European‐Americans that correlate 16 polymorphisms in the interleukin‐1B region with high gingival crevicular fluid‐interleukin‐1β levels. We show that inflammasome components are increased in diseased periodontal tissues and that the caspase‐1 inhibitor, VX‐765, inhibits ~50% of alveolar bone loss in experimental periodontitis. The literature review further supports that although patients clinically present with the same phenotype, the disease that develops probably has different underlying biological pathways. The current data indicate that inflammasomes have a role in periodontal disease pathogenesis. Understanding the contribution of different inflammasomes to disease development and distinct patient susceptibility will probably translate into improved, personalized therapies. |
format | Online Article Text |
id | pubmed-6927484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69274842020-01-27 Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics Marchesan, Julie T. Girnary, Mustafa Saadat Moss, Kevin Monaghan, Eugenia Timofeev Egnatz, Grant Joseph Jiao, Yizu Zhang, Shaoping Beck, Jim Swanson, Karen V. Periodontol 2000 Review Articles Inflammasomes are a group of multimolecular intracellular complexes assembled around several innate immune proteins. Recognition of a diverse range of microbial, stress and damage signals by inflammasomes results in direct activation of caspase‐1, which subsequently induces the only known form of secretion of active interleukin‐1β and interleukin‐18. Although the importance of interleukin‐1β in the periodontium is not questioned, the impact of inflammasomes in periodontal disease and its potential for therapeutics in periodontology is still in its very early stages. Increasing evidence in preclinical models and human data strongly implicate the involvement of inflammasomes in a number of inflammatory, autoinflammatory and autoimmune disorders. Here we review: (a) the currently known inflammasome functions, (b) clinical/preclinical data supporting inflammasome involvement in the context of periodontal and comorbid diseases and (c) potential therapies targeting inflammasomes. To clarify further the inflammasome involvement in periodontitis, we present analyses of data from a large clinical study (n = 5809) that measured the gingival crevicular fluid‐interleukin‐1β and grouped the participants based on current periodontal disease classifications. We review data on 4910 European‐Americans that correlate 16 polymorphisms in the interleukin‐1B region with high gingival crevicular fluid‐interleukin‐1β levels. We show that inflammasome components are increased in diseased periodontal tissues and that the caspase‐1 inhibitor, VX‐765, inhibits ~50% of alveolar bone loss in experimental periodontitis. The literature review further supports that although patients clinically present with the same phenotype, the disease that develops probably has different underlying biological pathways. The current data indicate that inflammasomes have a role in periodontal disease pathogenesis. Understanding the contribution of different inflammasomes to disease development and distinct patient susceptibility will probably translate into improved, personalized therapies. John Wiley and Sons Inc. 2019-12-18 2020-02 /pmc/articles/PMC6927484/ /pubmed/31850638 http://dx.doi.org/10.1111/prd.12269 Text en © 2019 The Authors. Periodontology 2000 Published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Articles Marchesan, Julie T. Girnary, Mustafa Saadat Moss, Kevin Monaghan, Eugenia Timofeev Egnatz, Grant Joseph Jiao, Yizu Zhang, Shaoping Beck, Jim Swanson, Karen V. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics |
title | Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics |
title_full | Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics |
title_fullStr | Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics |
title_full_unstemmed | Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics |
title_short | Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics |
title_sort | role of inflammasomes in the pathogenesis of periodontal disease and therapeutics |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927484/ https://www.ncbi.nlm.nih.gov/pubmed/31850638 http://dx.doi.org/10.1111/prd.12269 |
work_keys_str_mv | AT marchesanjuliet roleofinflammasomesinthepathogenesisofperiodontaldiseaseandtherapeutics AT girnarymustafasaadat roleofinflammasomesinthepathogenesisofperiodontaldiseaseandtherapeutics AT mosskevin roleofinflammasomesinthepathogenesisofperiodontaldiseaseandtherapeutics AT monaghaneugeniatimofeev roleofinflammasomesinthepathogenesisofperiodontaldiseaseandtherapeutics AT egnatzgrantjoseph roleofinflammasomesinthepathogenesisofperiodontaldiseaseandtherapeutics AT jiaoyizu roleofinflammasomesinthepathogenesisofperiodontaldiseaseandtherapeutics AT zhangshaoping roleofinflammasomesinthepathogenesisofperiodontaldiseaseandtherapeutics AT beckjim roleofinflammasomesinthepathogenesisofperiodontaldiseaseandtherapeutics AT swansonkarenv roleofinflammasomesinthepathogenesisofperiodontaldiseaseandtherapeutics |