Cargando…
Methods for dynamic synchrotron X-ray respiratory imaging in live animals
Small-animal physiology studies are typically complicated, but the level of complexity is greatly increased when performing live-animal X-ray imaging studies at synchrotron and compact light sources. This group has extensive experience in these types of studies at the SPring-8 and Australian synchro...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927518/ https://www.ncbi.nlm.nih.gov/pubmed/31868749 http://dx.doi.org/10.1107/S1600577519014863 |
_version_ | 1783482314892771328 |
---|---|
author | Morgan, Kaye Susannah Parsons, David Cmielewski, Patricia McCarron, Alexandra Gradl, Regine Farrow, Nigel Siu, Karen Takeuchi, Akihisa Suzuki, Yoshio Uesugi, Kentaro Uesugi, Masayuki Yagi, Naoto Hall, Chris Klein, Mitzi Maksimenko, Anton Stevenson, Andrew Hausermann, Daniel Dierolf, Martin Pfeiffer, Franz Donnelley, Martin |
author_facet | Morgan, Kaye Susannah Parsons, David Cmielewski, Patricia McCarron, Alexandra Gradl, Regine Farrow, Nigel Siu, Karen Takeuchi, Akihisa Suzuki, Yoshio Uesugi, Kentaro Uesugi, Masayuki Yagi, Naoto Hall, Chris Klein, Mitzi Maksimenko, Anton Stevenson, Andrew Hausermann, Daniel Dierolf, Martin Pfeiffer, Franz Donnelley, Martin |
author_sort | Morgan, Kaye Susannah |
collection | PubMed |
description | Small-animal physiology studies are typically complicated, but the level of complexity is greatly increased when performing live-animal X-ray imaging studies at synchrotron and compact light sources. This group has extensive experience in these types of studies at the SPring-8 and Australian synchrotrons, as well as the Munich Compact Light Source. These experimental settings produce unique challenges. Experiments are always performed in an isolated radiation enclosure not specifically designed for live-animal imaging. This requires equipment adapted to physiological monitoring and test-substance delivery, as well as shuttering to reduce the radiation dose. Experiment designs must also take into account the fixed location, size and orientation of the X-ray beam. This article describes the techniques developed to overcome the challenges involved in respiratory X-ray imaging of live animals at synchrotrons, now enabling increasingly sophisticated imaging protocols. |
format | Online Article Text |
id | pubmed-6927518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-69275182020-01-07 Methods for dynamic synchrotron X-ray respiratory imaging in live animals Morgan, Kaye Susannah Parsons, David Cmielewski, Patricia McCarron, Alexandra Gradl, Regine Farrow, Nigel Siu, Karen Takeuchi, Akihisa Suzuki, Yoshio Uesugi, Kentaro Uesugi, Masayuki Yagi, Naoto Hall, Chris Klein, Mitzi Maksimenko, Anton Stevenson, Andrew Hausermann, Daniel Dierolf, Martin Pfeiffer, Franz Donnelley, Martin J Synchrotron Radiat Research Papers Small-animal physiology studies are typically complicated, but the level of complexity is greatly increased when performing live-animal X-ray imaging studies at synchrotron and compact light sources. This group has extensive experience in these types of studies at the SPring-8 and Australian synchrotrons, as well as the Munich Compact Light Source. These experimental settings produce unique challenges. Experiments are always performed in an isolated radiation enclosure not specifically designed for live-animal imaging. This requires equipment adapted to physiological monitoring and test-substance delivery, as well as shuttering to reduce the radiation dose. Experiment designs must also take into account the fixed location, size and orientation of the X-ray beam. This article describes the techniques developed to overcome the challenges involved in respiratory X-ray imaging of live animals at synchrotrons, now enabling increasingly sophisticated imaging protocols. International Union of Crystallography 2020-01-01 /pmc/articles/PMC6927518/ /pubmed/31868749 http://dx.doi.org/10.1107/S1600577519014863 Text en © Morgan et al. 2020 http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Research Papers Morgan, Kaye Susannah Parsons, David Cmielewski, Patricia McCarron, Alexandra Gradl, Regine Farrow, Nigel Siu, Karen Takeuchi, Akihisa Suzuki, Yoshio Uesugi, Kentaro Uesugi, Masayuki Yagi, Naoto Hall, Chris Klein, Mitzi Maksimenko, Anton Stevenson, Andrew Hausermann, Daniel Dierolf, Martin Pfeiffer, Franz Donnelley, Martin Methods for dynamic synchrotron X-ray respiratory imaging in live animals |
title | Methods for dynamic synchrotron X-ray respiratory imaging in live animals |
title_full | Methods for dynamic synchrotron X-ray respiratory imaging in live animals |
title_fullStr | Methods for dynamic synchrotron X-ray respiratory imaging in live animals |
title_full_unstemmed | Methods for dynamic synchrotron X-ray respiratory imaging in live animals |
title_short | Methods for dynamic synchrotron X-ray respiratory imaging in live animals |
title_sort | methods for dynamic synchrotron x-ray respiratory imaging in live animals |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927518/ https://www.ncbi.nlm.nih.gov/pubmed/31868749 http://dx.doi.org/10.1107/S1600577519014863 |
work_keys_str_mv | AT morgankayesusannah methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT parsonsdavid methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT cmielewskipatricia methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT mccarronalexandra methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT gradlregine methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT farrownigel methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT siukaren methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT takeuchiakihisa methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT suzukiyoshio methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT uesugikentaro methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT uesugimasayuki methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT yaginaoto methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT hallchris methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT kleinmitzi methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT maksimenkoanton methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT stevensonandrew methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT hausermanndaniel methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT dierolfmartin methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT pfeifferfranz methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals AT donnelleymartin methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals |