Cargando…

Methods for dynamic synchrotron X-ray respiratory imaging in live animals

Small-animal physiology studies are typically complicated, but the level of complexity is greatly increased when performing live-animal X-ray imaging studies at synchrotron and compact light sources. This group has extensive experience in these types of studies at the SPring-8 and Australian synchro...

Descripción completa

Detalles Bibliográficos
Autores principales: Morgan, Kaye Susannah, Parsons, David, Cmielewski, Patricia, McCarron, Alexandra, Gradl, Regine, Farrow, Nigel, Siu, Karen, Takeuchi, Akihisa, Suzuki, Yoshio, Uesugi, Kentaro, Uesugi, Masayuki, Yagi, Naoto, Hall, Chris, Klein, Mitzi, Maksimenko, Anton, Stevenson, Andrew, Hausermann, Daniel, Dierolf, Martin, Pfeiffer, Franz, Donnelley, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927518/
https://www.ncbi.nlm.nih.gov/pubmed/31868749
http://dx.doi.org/10.1107/S1600577519014863
_version_ 1783482314892771328
author Morgan, Kaye Susannah
Parsons, David
Cmielewski, Patricia
McCarron, Alexandra
Gradl, Regine
Farrow, Nigel
Siu, Karen
Takeuchi, Akihisa
Suzuki, Yoshio
Uesugi, Kentaro
Uesugi, Masayuki
Yagi, Naoto
Hall, Chris
Klein, Mitzi
Maksimenko, Anton
Stevenson, Andrew
Hausermann, Daniel
Dierolf, Martin
Pfeiffer, Franz
Donnelley, Martin
author_facet Morgan, Kaye Susannah
Parsons, David
Cmielewski, Patricia
McCarron, Alexandra
Gradl, Regine
Farrow, Nigel
Siu, Karen
Takeuchi, Akihisa
Suzuki, Yoshio
Uesugi, Kentaro
Uesugi, Masayuki
Yagi, Naoto
Hall, Chris
Klein, Mitzi
Maksimenko, Anton
Stevenson, Andrew
Hausermann, Daniel
Dierolf, Martin
Pfeiffer, Franz
Donnelley, Martin
author_sort Morgan, Kaye Susannah
collection PubMed
description Small-animal physiology studies are typically complicated, but the level of complexity is greatly increased when performing live-animal X-ray imaging studies at synchrotron and compact light sources. This group has extensive experience in these types of studies at the SPring-8 and Australian synchrotrons, as well as the Munich Compact Light Source. These experimental settings produce unique challenges. Experiments are always performed in an isolated radiation enclosure not specifically designed for live-animal imaging. This requires equipment adapted to physiological monitoring and test-substance delivery, as well as shuttering to reduce the radiation dose. Experiment designs must also take into account the fixed location, size and orientation of the X-ray beam. This article describes the techniques developed to overcome the challenges involved in respiratory X-ray imaging of live animals at synchrotrons, now enabling increasingly sophisticated imaging protocols.
format Online
Article
Text
id pubmed-6927518
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-69275182020-01-07 Methods for dynamic synchrotron X-ray respiratory imaging in live animals Morgan, Kaye Susannah Parsons, David Cmielewski, Patricia McCarron, Alexandra Gradl, Regine Farrow, Nigel Siu, Karen Takeuchi, Akihisa Suzuki, Yoshio Uesugi, Kentaro Uesugi, Masayuki Yagi, Naoto Hall, Chris Klein, Mitzi Maksimenko, Anton Stevenson, Andrew Hausermann, Daniel Dierolf, Martin Pfeiffer, Franz Donnelley, Martin J Synchrotron Radiat Research Papers Small-animal physiology studies are typically complicated, but the level of complexity is greatly increased when performing live-animal X-ray imaging studies at synchrotron and compact light sources. This group has extensive experience in these types of studies at the SPring-8 and Australian synchrotrons, as well as the Munich Compact Light Source. These experimental settings produce unique challenges. Experiments are always performed in an isolated radiation enclosure not specifically designed for live-animal imaging. This requires equipment adapted to physiological monitoring and test-substance delivery, as well as shuttering to reduce the radiation dose. Experiment designs must also take into account the fixed location, size and orientation of the X-ray beam. This article describes the techniques developed to overcome the challenges involved in respiratory X-ray imaging of live animals at synchrotrons, now enabling increasingly sophisticated imaging protocols. International Union of Crystallography 2020-01-01 /pmc/articles/PMC6927518/ /pubmed/31868749 http://dx.doi.org/10.1107/S1600577519014863 Text en © Morgan et al. 2020 http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/4.0/
spellingShingle Research Papers
Morgan, Kaye Susannah
Parsons, David
Cmielewski, Patricia
McCarron, Alexandra
Gradl, Regine
Farrow, Nigel
Siu, Karen
Takeuchi, Akihisa
Suzuki, Yoshio
Uesugi, Kentaro
Uesugi, Masayuki
Yagi, Naoto
Hall, Chris
Klein, Mitzi
Maksimenko, Anton
Stevenson, Andrew
Hausermann, Daniel
Dierolf, Martin
Pfeiffer, Franz
Donnelley, Martin
Methods for dynamic synchrotron X-ray respiratory imaging in live animals
title Methods for dynamic synchrotron X-ray respiratory imaging in live animals
title_full Methods for dynamic synchrotron X-ray respiratory imaging in live animals
title_fullStr Methods for dynamic synchrotron X-ray respiratory imaging in live animals
title_full_unstemmed Methods for dynamic synchrotron X-ray respiratory imaging in live animals
title_short Methods for dynamic synchrotron X-ray respiratory imaging in live animals
title_sort methods for dynamic synchrotron x-ray respiratory imaging in live animals
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927518/
https://www.ncbi.nlm.nih.gov/pubmed/31868749
http://dx.doi.org/10.1107/S1600577519014863
work_keys_str_mv AT morgankayesusannah methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT parsonsdavid methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT cmielewskipatricia methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT mccarronalexandra methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT gradlregine methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT farrownigel methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT siukaren methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT takeuchiakihisa methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT suzukiyoshio methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT uesugikentaro methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT uesugimasayuki methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT yaginaoto methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT hallchris methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT kleinmitzi methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT maksimenkoanton methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT stevensonandrew methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT hausermanndaniel methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT dierolfmartin methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT pfeifferfranz methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals
AT donnelleymartin methodsfordynamicsynchrotronxrayrespiratoryimaginginliveanimals