Cargando…
Physical space interacts with clonal fragmentation and nutrient availability to affect the growth of Salvinia natans
Physical space, clonal fragmentation and nutrient availability can each affect the growth of clonal plants, but their interactive effect has been little studied. We grew un-fragmented (connected) and fragmented (disconnected) ramet pairs of the floating, clonal plant Salvinia natans in cylindrical c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927599/ https://www.ncbi.nlm.nih.gov/pubmed/31869392 http://dx.doi.org/10.1371/journal.pone.0226850 |
_version_ | 1783482326675619840 |
---|---|
author | Si, Chao Jin, Yu Lin, Jing Zhang, Jian-Feng Chen, Jin-Song Yu, Fei-Hai |
author_facet | Si, Chao Jin, Yu Lin, Jing Zhang, Jian-Feng Chen, Jin-Song Yu, Fei-Hai |
author_sort | Si, Chao |
collection | PubMed |
description | Physical space, clonal fragmentation and nutrient availability can each affect the growth of clonal plants, but their interactive effect has been little studied. We grew un-fragmented (connected) and fragmented (disconnected) ramet pairs of the floating, clonal plant Salvinia natans in cylindrical containers with different diameters and heights (volumes) filled with solutions of two nutrient levels (high vs. low). To simulate competition environments that are commonly confronted by S. natans, we also added two ramets of another floating plants Spirodela polyrrhiza in each container. Biomass (total biomass, floating biomass and submerged biomass) and number of ramets of S. salvinia were higher in the containers with a larger diameter. Compared to the low nutrient level, the high nutrient level increased number of ramets, and altered submerged to floating mass ratio of S. salvinia. The impacts of physical space on floating mass and number of ramets were stronger under the high than under the low nutrient level. Clonal fragmentation positively affected biomass in the containers with a smaller volume (a smaller height and diameter), but had little impact in the containers with a larger volume (a larger height or diameter). Our results suggest that physical space can interact with nutrients and clonal fragmentation to affect the performance of S. salvinia under competition. |
format | Online Article Text |
id | pubmed-6927599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-69275992020-01-07 Physical space interacts with clonal fragmentation and nutrient availability to affect the growth of Salvinia natans Si, Chao Jin, Yu Lin, Jing Zhang, Jian-Feng Chen, Jin-Song Yu, Fei-Hai PLoS One Research Article Physical space, clonal fragmentation and nutrient availability can each affect the growth of clonal plants, but their interactive effect has been little studied. We grew un-fragmented (connected) and fragmented (disconnected) ramet pairs of the floating, clonal plant Salvinia natans in cylindrical containers with different diameters and heights (volumes) filled with solutions of two nutrient levels (high vs. low). To simulate competition environments that are commonly confronted by S. natans, we also added two ramets of another floating plants Spirodela polyrrhiza in each container. Biomass (total biomass, floating biomass and submerged biomass) and number of ramets of S. salvinia were higher in the containers with a larger diameter. Compared to the low nutrient level, the high nutrient level increased number of ramets, and altered submerged to floating mass ratio of S. salvinia. The impacts of physical space on floating mass and number of ramets were stronger under the high than under the low nutrient level. Clonal fragmentation positively affected biomass in the containers with a smaller volume (a smaller height and diameter), but had little impact in the containers with a larger volume (a larger height or diameter). Our results suggest that physical space can interact with nutrients and clonal fragmentation to affect the performance of S. salvinia under competition. Public Library of Science 2019-12-23 /pmc/articles/PMC6927599/ /pubmed/31869392 http://dx.doi.org/10.1371/journal.pone.0226850 Text en © 2019 Si et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Si, Chao Jin, Yu Lin, Jing Zhang, Jian-Feng Chen, Jin-Song Yu, Fei-Hai Physical space interacts with clonal fragmentation and nutrient availability to affect the growth of Salvinia natans |
title | Physical space interacts with clonal fragmentation and nutrient availability to affect the growth of Salvinia natans |
title_full | Physical space interacts with clonal fragmentation and nutrient availability to affect the growth of Salvinia natans |
title_fullStr | Physical space interacts with clonal fragmentation and nutrient availability to affect the growth of Salvinia natans |
title_full_unstemmed | Physical space interacts with clonal fragmentation and nutrient availability to affect the growth of Salvinia natans |
title_short | Physical space interacts with clonal fragmentation and nutrient availability to affect the growth of Salvinia natans |
title_sort | physical space interacts with clonal fragmentation and nutrient availability to affect the growth of salvinia natans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927599/ https://www.ncbi.nlm.nih.gov/pubmed/31869392 http://dx.doi.org/10.1371/journal.pone.0226850 |
work_keys_str_mv | AT sichao physicalspaceinteractswithclonalfragmentationandnutrientavailabilitytoaffectthegrowthofsalvinianatans AT jinyu physicalspaceinteractswithclonalfragmentationandnutrientavailabilitytoaffectthegrowthofsalvinianatans AT linjing physicalspaceinteractswithclonalfragmentationandnutrientavailabilitytoaffectthegrowthofsalvinianatans AT zhangjianfeng physicalspaceinteractswithclonalfragmentationandnutrientavailabilitytoaffectthegrowthofsalvinianatans AT chenjinsong physicalspaceinteractswithclonalfragmentationandnutrientavailabilitytoaffectthegrowthofsalvinianatans AT yufeihai physicalspaceinteractswithclonalfragmentationandnutrientavailabilitytoaffectthegrowthofsalvinianatans |