Cargando…
Feature selection for helpfulness prediction of online product reviews: An empirical study
Online product reviews underpin nearly all e-shopping activities. The high volume of data, as well as various online review quality, puts growing pressure on automated approaches for informative content prioritization. Despite a substantial body of literature on review helpfulness prediction, the ra...
Autores principales: | Du, Jiahua, Rong, Jia, Michalska, Sandra, Wang, Hua, Zhang, Yanchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927604/ https://www.ncbi.nlm.nih.gov/pubmed/31869404 http://dx.doi.org/10.1371/journal.pone.0226902 |
Ejemplares similares
-
Neural attention with character embeddings for hay fever detection from twitter
por: Du, Jiahua, et al.
Publicado: (2019) -
Deep learning for pollen allergy surveillance from twitter in Australia
por: Rong, Jia, et al.
Publicado: (2019) -
Are screening methods useful in feature selection? An empirical study
por: Wang, Mingyuan, et al.
Publicado: (2019) -
What makes helpful online mental health information? Empirical evidence on the effects of information quality and responders’ effort
por: Guo, Cui, et al.
Publicado: (2022) -
Does Usage of Online Social Media Help Users With Depressed Symptoms Improve Their Mental Health? Empirical Evidence From an Online Depression Community
por: Lu, Yingjie, et al.
Publicado: (2021)