Cargando…
Machine learning and glioma imaging biomarkers
AIM: To review how machine learning (ML) is applied to imaging biomarkers in neuro-oncology, in particular for diagnosis, prognosis, and treatment response monitoring. MATERIALS AND METHODS: The PubMed and MEDLINE databases were searched for articles published before September 2018 using relevant se...
Autores principales: | Booth, T.C., Williams, M., Luis, A., Cardoso, J., Ashkan, K., Shuaib, H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927796/ https://www.ncbi.nlm.nih.gov/pubmed/31371027 http://dx.doi.org/10.1016/j.crad.2019.07.001 |
Ejemplares similares
-
Imaging Biomarkers of Glioblastoma Treatment Response: A Systematic Review and Meta-Analysis of Recent Machine Learning Studies
por: Booth, Thomas C., et al.
Publicado: (2022) -
Glioblastoma post-operative imaging in neuro-oncology: current UK practice (GIN CUP study)
por: Booth, Thomas C., et al.
Publicado: (2020) -
Texture feature analysis of MRI-ADC images to differentiate glioma grades using machine learning techniques
por: Vijithananda, Sahan M., et al.
Publicado: (2023) -
Glioma Grading via Analysis of Digital Pathology Images Using Machine Learning
por: Rathore, Saima, et al.
Publicado: (2020) -
Machine Learning Based on Diffusion Kurtosis Imaging Histogram Parameters for Glioma Grading
por: Jiang, Liang, et al.
Publicado: (2022)